AP Chemistry Problem Set Chapter 15

30 points - 5 points for completion, 3 random essay problems will be graded, each worth 5 points. Each multiple choice must be answered (1 point each). Staple this sheet to the front of your essay responses.

Multiple Choice. Please indicate your multiple choice answers below.

1. _____ 2. _____ 3. ____ 4. ____ 5. ____

6. _____7. _____ 8. ____9. ____10. ____

Use these answers for questions 1-3. (1989)

Ionization Constants		
CH ₃ COOH	1.8 x 10 ⁻⁵	
NH ₃	1.8 x 10 ⁻⁵	
H ₂ CO ₃	$K_1 = 4 \times 10^{-7}$	
H ₂ CO ₃	$K_2 = 4 \times 10^{-11}$	

- a. a solution with a pH less than 7 that is not a buffer solution
- b. a buffer solution with a pH between 4 and 7
- c. a buffer solution with a pH between 7 and 10 $\,$
- d. a solution with a pH greater than 7 that is not a buffer solution
- e. a solution with a pH of 7

1. A solution prepared to be initially 1 M in NaCl and 1 M in HCl.

- 2. A solution prepared to be initially 1 M in Na₂CO₃ and 1 M in CH₃COONa
- 3. A solution prepared to be initially 0.5 M in CH₃COOH and 1 M in CH₃COONa

Question 4-7 refer to aqueous solutions containing 1:1 mole ratios of the following pairs of substances. Assume all concentrations are 1 M. (1999)

a. NH_3 and NH_4Cl

- b. H_3PO_4 and NaH_2PO_4
- c. HCl and NaCl
- d. NaOH and NH₃
- e. NH_3 and $HC_2H_3O_2$ (acetic acid)
- 4. The solution with the lowest pH
- 5. The most nearly neutral solution
- 6. A buffer at a pH > 8
- 7. A buffer at a pH < 6

8. On the basis of the information above, a buffer with a pH = 9 can best be made by using: (1984)

a. pure NaH₂PO₄ b. $H_3PO_4 + H_2PO_4^{-1}$ c. $H_2PO_4^{-1} + PO_4^{-3-1}$ d. $H_2PO_4^{-1} + HPO_4^{-3-1}$

	24			
e.	HPO ₄ ²⁻	+	PO	3- 4

Acid	Acid Dissociation Constant, K _a
H ₃ PO ₄	7 x 10 ⁻³
$H_2PO_4^-$	8 x 10 ⁻⁸
HPO ₄ ²⁻	5 x 10 ⁻¹³

Name

9. In the titration of a weak acid of unknown concentration with a standard solution of a strong base, a pH meter was used to follow the progress of the titration. Which of the following is true for this experiment? (1989)

a. The pH is 7 at the equivalence point.

b. The pH at the equivalence point depends on the indicator used.

c. The graph of pH versus volume of base added rises gradually at first and then much more rapidly.

d. The graph of pH versus volume of base added shows no sharp rise.

e. The $[H^+]$ at the equivalence point equals the ionization constant of the acid.

10. When phenolphthalein is used as the indicator in a titration of an HCl solution with a solution of NaOH, the indicator undergoes a color change from clear to red at the end point of the titration. This color change occurs abruptly because: (1989)

- a. phenolphthalein is a very strong acid that is capable of rapid dissociation
- b. the solution being titrated undergoes a large pH change near the end point of the titration
- c. phenolphthalein undergoes an irreversible reaction in basic solution
- d. OH⁻ acts as a catalyst for the decomposition of phenolphthalein
- e. phenolphthalein is involved in the rate-determining step of the reaction between H_3O^+ and OH^-

Essays

1. Titrations

Consider the titration of 100.0 mL of 0.100 M H_2NNH_2 ($K_b = 3.0 \times 10^{-6}$) by 0.200 M HNO₃. Calculate the pH of the resulting solution after the following volumes of HNO₃ have been added.

- a. 0.0 mL
- b. 25.0 mL
- c. 40.0 mL
- d. 50.0 mL
- e. 100.0 mL

2. Solubility Product

a. A saturated solution of silver arsenate (Ag₃AsO₄) contains 8.5 x 10^{-6} g Ag₃AsO₄ per mL. Calculate the K_{sp} of silver arsenate. Assume there are no other reactions but the K_{sp} reaction.

b. The solubility of silver chromate is (Ag_2CrO_4) in water is 2.7 x 10^{-3} g/100. mL. Calculate the K_{sp} of silver chromate. Assume there are no other reactions but the K_{sp} reaction.

c. The solubility product value for lead(II) iodide is 1.4×10^{-8} at 25°C. Calculate the solubility of PbI₂.

3. Buffers

Calculate the pH change when 1.0 mL of 1.0 M HCl is added to 0.100 L of a solution of:

- a. 0.10 M acetic acid and 0.10 M sodium acetate
- b. 0.010 M acetic acid and 0.010 M sodium acetate
- c. 0.0010 M acetic acid and 0.0010 M sodium acetate

A buffer consists of 0.20 M propanoic acid (Ka = 1.4×10^{-5}) and 0.30 M sodium propanoate.

- d. Calculate the pH of this buffer.
- e. Calculate the pH after the addition of 3.0 mL of the 1.0 M HCl to 0.010 L of the buffer.

4. Solubility Equilibria

a. A solution is prepared by mixing 75.0 mL of 0.020 M BaCl₂ and 125 mL of 0.040 M Na₂SO₄. Calculate the concentrations of Ba²⁺ and SO₄²⁻ at equilibrium ($K_{sp} = 1.5 \times 10^{-9}$).

b. A solution consists of 2.5 x 10^{-4} M Na₃PO₄. What is the minimum concentration of AgNO₃ that would cause precipitation of solid Ag₃PO₄ (K_{sp} = 1.8 x 10^{-18})?

5.

$NH_3(aq) + H_2O(l) \le NH_4^+(aq) + OH^-(aq)$

In aqueous solution, ammonia reacts as represented above. In 0.0180 *M* NH₃(*aq*) at 25°C, the hydroxide ion concentration, [OH⁻], is 5.60 X 10^{-4} *M*. In answering the following, assume that temperature is constant at 25°C and that volumes are additive.

- a. Write the equilibrium-constant expression for the reaction represented above.
- b. Determine the pH of $0.0180 M \text{ NH}_3(aq)$.
- c. Determine the value of the base ionization constant, K_b , for $NH_3(aq)$.
- d. Determine the percent ionization of NH_3 in 0.0180 *M* $NH_3(aq)$.
- e. In an experiment, a 20.0 mL sample of $0.0180 M \text{ NH}_3(aq)$ was placed in a flask and titrated to the equivalence point and beyond using 0.0120 M HCl(aq).
 - i. Determine the volume of 0.0120 *M* HCl(*aq*) that was added to reach the equivalence point.
 - ii. Determine the pH of the solution in the flask after a total of 15.0 mL of 0.0120 M HCl(*aq*) was added.
 - iii. Determine the pH of the solution in the flask after a total of 40.0 mL of 0.0120 M HCl(*aq*) was added.

AP Chemistry Problem Set Chapter 15

30 points - 5 points for completion, 3 random essay problems will be graded, each worth 5 points. Each multiple choice must be answered (1 point each). Staple this sheet to the front of your essay responses.

Multiple Choice. Please indicate your multiple choice answers below.

1.40% A	2.26% D	3.36% B	4. 52% C	5. 41% E
6.33% A	7.35% B	8.32% D	9. 50% C	10. 66% B

Use these answers for questions 1-3.

Ionization Constants	
CH ₃ COOH	1.8 x 10 ⁻⁵
NH ₃	1.8 x 10 ⁻⁵
H_2CO_3	$K_1 = 4 \times 10^{-7}$
H ₂ CO ₃	$K_2 = 4 \times 10^{-11}$

a. a solution with a pH less than 7 that is not a buffer solution

b. a buffer solution with a pH between 4 and 7

c. a buffer solution with a pH between 7 and 10 $\,$

d. a solution with a pH greater than 7 that is not a buffer solution

e. a solution with a pH of 7

1. A solution prepared to be initially 1 M in NaCl and 1 M in HCl. 1989 40% A

2. A solution prepared to be initially 1 M in Na₂CO₃ and 1 M in CH₃COONa 1989 26% D

3. A solution prepared to be initially 0.5 M in CH₃COOH and 1 M in CH₃COONa 1989 36% B

Question 4-7 refer to aqueous solutions containing 1:1 mole ratios of the following pairs of substances. Assume all concentrations are 1 M.

- a. NH₃ and NH₄Cl
- b. H_3PO_4 and NaH_2PO_4
- c. HCl and NaCl
- d. NaOH and $\ensuremath{NH_3}$
- e. NH_3 and $HC_2H_3O_2$ (acetic acid)

4. The solution with the lowest pH 1999 52% C

- 5. The most nearly neutral solution 1999 41% E
- 6. A buffer at a pH > 8 1999 33% A
- 7. A buffer at a pH < 6 **1999 35% B**

8. On the basis of the information above, a buffer with a pH = 9 can best be made by using **1984 32% D**

a. pure NaH₂PO₄ b. H₃PO₄ + H₂PO₄⁻ c. H₂PO₄⁻ + PO₄³⁻ d. H₂PO₄⁻ + HPO₄²⁻ e. HPO₄²⁻ + PO₄³⁻

Acid	Acid Dissociation Constant, K _a
H ₃ PO ₄	7 x 10 ⁻³
H ₂ PO ₄	8 x 10 ⁻⁸
HPO ₄ ²⁻	5 x 10 ⁻¹³

Name

9. In the titration of a weak acid of unknown concentration with a standard solution of a strong base, a pH meter was used to follow the progress of the titration. Which of the following is true for this experiment?

- a. The pH is 7 at the equivalence point.
- b. The pH at the equivalence point depends on the indicator used.

c. The graph of pH versus volume of base added rises gradually at first and then much more rapidly. 1989 50%

- d. The graph of pH versus volume of base added shows no sharp rise.
- e. The $[H^+]$ at the equivalence point equals the ionization constant of the acid.

10. When phenolphthalein is used as the indicator in a titration of an HCl solution with a solution of NaOH, the indicator undergoes a color change from clear to red at the end point of the titration. This color change occurs abruptly because:

a. phenolphthalein is a very strong acid that is capable of rapid dissociation

b. the solution being titrated undergoes a large pH change near the end point of the titration
1989 66%

- c. phenolphthalein undergoes an irreversible reaction in basic solution
- d. OH⁻ acts as a catalyst for the decomposition of phenolphthalein
- e. phenolphthalein is involved in the rate-determining step of the reaction between H_3O^+ and OH^-

Essays

1. Titrations

Consider the titration of 100.0 mL of 0.100 M H_2NNH_2 ($K_b = 3.0 \times 10^{-6}$) by 0.200 M HNO₃. Calculate the pH of the resulting solution after the following volumes of HNO₃ have been added.

- a. 0.0 mL pH = 10.74
- b. 25.0 mL **pH = 8.5**
- c. 40.0 mL pH = 7.9
- d. 50.0 mL pH = 4.8
- e. 100.0 m \bar{L} pH = 1.3

2. Solubility Product

a. A saturated solution of silver arsenate (Ag₃AsO₄) contains 8.5 x 10^{-6} g Ag₃AsO₄ per mL. Calculate the K_{sp} of silver arsenate. Assume there are no other reactions but the K_{sp} reaction. K_{sp} = **3.09 x 10⁻¹⁸**

b. The solubility of silver chromate is (Ag_2CrO_4) in water is 2.7 x 10⁻³ g/100. mL. Calculate the K_{sp} of silver chromate. Assume there are no other reactions but the K_{sp} reaction. K_{sp} = 2.16 x 10⁻¹²

c. The solubility product value for lead(II) iodide is $1.4 \ge 10^{-8}$ at 25°C. Calculate the solubility of PbI₂. Solubility = 1.52 x 10⁻³

3. Buffers

Calculate the pH change when 1.0 mL of 1.0 M HCl is added to 0.100 L of a solution of:

- a. 0.10 M acetic acid and 0.10 M sodium acetate $\Delta pH = -0.087$
- b. 0.010 M acetic acid and 0.010 M sodium acetate $\Delta pH = -1.52$
- c. 0.0010 M acetic acid and 0.0010 M sodium acetate $\Delta pH = -2.69$

A buffer consists of 0.20 M propanoic acid ($K_a = 1.4 \times 10^{-5}$) and 0.30 M sodium propanoate.

- d. Calculate the pH of this buffer. pH = 5.03
- e. Calculate the pH after the addition of 3.0 mL of the 1.0 M HCl to 0.010 L of the buffer. pH = 2.63

4. Solubility Equilibria

a. A solution is prepared by mixing 75.0 mL of 0.020 M BaCl₂ and 125 mL of 0.040 M Na₂SO₄. Calculate the concentrations of Ba²⁺ and SO₄²⁻ at equilibrium (K_{sp} = 1.5 x 10⁻⁹). [Ba²⁺] = 8.6 x 10⁻⁸ [SO₄²⁻] = 1.75 x 10⁻²

b. A solution consists of 2.5 x 10^{-4} M Na₃PO₄. What is the minimum concentration of AgNO₃ that would cause precipitation of solid Ag₃PO₄ (K_{sp} = 1.8 x 10^{-18})? [AgNO₃] = 1.93 x 10^{-5} M

5. AP Question - 1999

$NH_3(aq) + H_2O(l) \le NH_4^+(aq) + OH^-(aq)$

In aqueous solution, ammonia reacts as represented above. In 0.0180 *M* NH₃(*aq*) at 25°C, the hydroxide ion concentration, [OH], is 5.60 X 10^{-4} *M*. In answering the following, assume that temperature is constant at 25°C and that volumes are additive.

- f. Write the equilibrium-constant expression for the reaction $K = \frac{[NH_4^+][OH]}{[NH_3]}$
- g. Determine the pH of $0.0180 M \text{ NH}_3(aq)$. **pH** = 10.7
- h. Determine the value of the base ionization constant, K_b , for NH₃(*aq*). $K_b = 1.74 \times 10^{-5}$
- i. Determine the percent ionization of NH_3 in 0.0180 *M* $NH_3(aq)$. **3.11%**
- j. In an experiment, a 20.0 mL sample of $0.0180 M \text{ NH}_3(aq)$ was placed in a flask and titrated to the equivalence point and beyond using 0.0120 M HCl(aq).
 - i. Determine the volume of 0.0120 *M* HCl(*aq*) that was added to reach the equivalence point. **30.0 mL**
 - ii. Determine the pH of the solution in the flask after a total of 15.0 mL of 0.0120 M HCl(aq) was added. pH = 9.3
 - iii. Determine the pH of the solution in the flask after a total of 40.0 mL of 0.0120 M HCl(aq) was added. pH = 2.7