| Name | AP Chemistry | | |---|--|---| | HW7_2: Due 12/21/18 Com
and clearly label all final ar | nplete both free response questions. One will be graded. Show all work. Box | ľ | | (a) Calculate the amount of energy(b) Calculate the longest waveleng | olving fluorine gas involves breaking the F–F bond, which has a bond energy of 154 kJ mol ⁻¹ .
y, in joules, needed to break a single F–F bond.
the of light, in meters, that can supply the energy per photon necessary to break the F–F bond.
sectrum of neon corresponds to a frequency of 4.34 x 10 ¹⁴ s ⁻¹ . Calculate the wavelength, in
ands to this line. | | | | e molecules decompose as they absorb ultraviolet (UV) radiation, as shown by the equation below. raviolet radiation that comes from the Sun. + $O(q)$ | | | 2 - | oton with a frequency of $1.00 \times 10^{15} \text{ s}^{-1}$. | | | (i) How much energy, in j
(ii) The minimum energy | pools with a frequency of 1.00 x 10 $^{-6}$ s. joules, does the O ₃ (g) molecule absorb per photon? needed to break an oxygen-oxygen bond in ozone is 387 kJ mol ⁻¹ . Does a photon with a frequency ough energy to break this bond? Support your answer with a calculation. | у | 2. In water, hydrazoic acid, HN ₃ , is a weak acid that has an equilibrium constant, K _a , equal to 2.8 x 10 ⁻⁵ at 25°C. A 0.300-liter sample of a 0.050-molar solution of the acid is prepared. (a) Write the expression for the equilibrium constant, K _a , for hydrazoic acid. (b) Calculate the pH of this solution at 25°C. | | | |--|--|--| | (c) To 0.150 liter of this solution, 0.80 gram of sodium azide, NaN ₃ , is added. The salt dissolves completely. Calculate the pH of the resulting solution at 25°C if the volume of the solution remains unchanged. (d) To the remaining 0.150 liter of the original solution, 0.075 liter of 0.100-molar NaOH solution is added. Calculate the [OH-] for the resulting solution at 25°C. | | | | the resulting solution at 25°C. |