1		r			
	N	Я	m	1e	S

AP Chem Group Quiz Chapters 5 & 6 - Circle and write the letter of the correct answer on the line.

1		Use the infor	mation in the table to	o calculate the			
			$7/2 O_2(g) \rightarrow 2CO_2(g)$		Re	action	ΔH_f^{ullet} , kJ·mol ⁻¹
ciniarp.	(A) –764 kJ		$J \qquad \qquad (C) -$		$2C(s) + 3H_2($	$g) \rightarrow C_2H_6(g)$	-84.7
	(D) -31	.20 kJ	(E) -595 kJ		$C(s) + O_2(g)$		-393.5
	() -		()			$2(g) \rightarrow H_2O(l)$	-285.8
2.		Under which	conditions will a gas	s behave most	$\Pi_2(g) + 72 \text{ O}_2$	$2(g) \rightarrow \Pi_2 O(i)$	-263.6
ideally?			Č				
•	(A) low P and hi	gh T	(B) le	ow P and low T	(C) h	igh P and low T	
		h P and high	Γ	(E) a gas will be			
	() [C		` , ¿	·		
3		A sample of i	neon gas has a volun	ne of 248 mL at 30.°	C and a certain	pressure. What vol	lume would it occupy
if it wer	re heated to 60.°C	at the same p	ressure?			-	
	(A) 226 mL	(B) 273 mL	(C) 278 mL	(D) 496 mL	(E) 124 mL		
4		The mass of 5	560 cm ³ of a gas at 0	0°C and 1 atm is 1.60	g. Which gas o	could it be?	
	$(A) O_2$	$(B) CO_2$	(C) SO ₂	(D) Cl ₂	(E) Xe		
					Substance	Specific Heat	Capacity (J·g-1.°C-1)
			at weighs 3.81 g is h		l Au		0.129
placed i			at is the final temper		H ₂ O		4.18
	(A) 22.2°C	(B) 24.0°C		26.5°C	1120		
	(D) 53.	1°C	(E) 30.5°C				
_							
			oxygen gas and a sa				
	_	to find the mo	olar mass of the unkr	nown gas (assume ex	xperiments are ca	arried out at the sa	me pressure and
tempera		1	104.46				
	f evacuated flask		124.46 g				
	f flask + oxygen		125.10 g				
Mass of	f flask + unknown	_	125.34 g				
	(A) 22 g/mol	(B) 38 g/mo	l (C) 44 g/mol	(D) 84	g/mol	(E) 66 g/mol	
_		~					
7		Given these r	eactions:				
	$A \rightarrow 2B$	$\Delta H = 40 \text{ kJ}$	r				
	$B \rightarrow C$	$\Delta H = -50 \text{ kJ}$					
C-11		$\Delta H = -20 \text{ kJ}$					
Caicuia	te ΔH for the reac			(D) 100 l-I	(E) 20 1-I		
	(A) -100 kJ	(B) -60 KJ	(C) -40 kJ	(D) 100 kJ	(E) -30 kJ		
8.		$C_{\bullet} \mathbf{H}_{\bullet}(\mathbf{g}) + 7/2$	$2\Omega_{\bullet}(a) \rightarrow 2\Omega_{\bullet}(a)$	3∐.Ω(α) Δ∐° –	1427 7 kI		
			$2O_2(g) \rightarrow 2CO_2(g) +$ (1) is 44.0 kJ/mol, w			is formed instead	of $\Pi_{\bullet} \Omega(\alpha)$?
II tile ei			kJ (C) –1471.7 k				01 112O(g):
	(A) = 1293.7 KJ	(B) -1363.7	KJ (C) -14/1./ K	J = (D) - 1339.7 KJ	(E) -1313.7 K.	J	
Q		For which of	these is ΔH_c° not eq	ual to zero?			
<i>)</i>	(A) Br ₂ (I)	(R) Fe(s)	these is ΔH_f° not eq. (C) $I_2(s)$	(D) $\Omega_2(a)$	(E) $Xe(g)$		
	$(II) Bi_2(t)$	(B) 1 c (s)	(C) 1 ₂ (3)	(D) 0 ₃ (8)	(E) $110(8)$		
10		Helium is of	ften found with meth	nane CH4 How do t	he diffusion rate	s of helium and m	ethane compare at
	e temperature? He			iano, eriq. 110 ii do i	ine diffusion face	or nonam and m	compare at
the sam	(A) sixteen times			our times as fast as 1	methane.		
	(C) twice as fast			it the same rate as m			
	(-)		half as fast as meth				
		(-/					
11.		The enthalp	v change for which	reaction represents t	he standard enth	alpy of formation	for hydrogen cyanide,
HCN?		_ · · · · · · · · · · · · · · · · · · ·	<i>y g</i>	1			, , , , , , , , , , , , , , , , , , ,
	(A) H(g) + C(grade)	aphite) + N(g	$\rightarrow HCN(g)$	(B) $\frac{1}{2}H_2(g) + C$	(graphite) + ½N	$_{2}(g) \rightarrow HCN(g)$	
	(C) $HCN(g) \rightarrow 1$	$^{2}\mathrm{H}_{2}(g)+\mathrm{C}(g)$	\rightarrow HCN(g) raphite) + $\frac{1}{2}$ N ₂ (g)	(D) $H_2(g) + 2C(g)$	$(graphite) + N_2(g$	$\rightarrow 2HCN(g)$	
	,	(E) $\frac{1}{2}H_2(g)$	+ C(graphite) + N(g	$(y) \rightarrow HCN(g)$,,	107	
12		_ What is the	molar mass of a gas	if 10.0 grams of it o	ccupy 4.48 liters	s at 273 K and 101	.3 kPa (1.00 atm)?
			nol (C) 50.0 g/mo				

endothermic?	For the formation		_		ements, which re	eaction is most
(A) CO (A	$\Delta H_f^{\circ} = -110.5 \text{ kJ} \cdot \text{mol}^{-1}$ $H_f^{\circ} = +142.2 \text{ kJ} \cdot \text{mol}^{-1}$	(B) No	$O_2 (\Delta H_f^{\circ} = +33.91)$	$(J \cdot \text{mol}^{-1})$		
(C) O ₃ (Δ	$H_f = +142.2 \text{ KJ} \cdot \text{IIIOI}$ (E) I_2	$(\Delta H_f^{\circ} = +62.0 \text{ kJ} \cdot$	-300.4 $\cdot \text{mol}^{-1}$)	· KJ·IIIOI)		
1.4				. 11 TC	Substance S	Specific Heat, J·g ⁻¹ .°C ⁻¹
	The specific head of Joules were applied to				Al	0.900
	eatest temperature chang	ge?			Au	0.129
(A) Al	(B) Au	(C) Cu	(D) Hg	(E) all	Cu	0.385
would be equal					Hg	0.139
15	4Li(s)	$+ O_2(g) \rightarrow 2Li_2O$	(s)			
At 25°C, ΔH° for t	this reaction is -598.8 ki	lojoules per mole	of Li ₂ O(s) formed	l. What mass o	of Li should be re	eacted with excess $O_2(g)$
in order to release	150. kJ? - g (B) 1.74 g	(C) 3.48 g	(D) 6.98 g	(F) 7.52 g		
(A) 0.074	(B) 1.74 g	(C) 3.40 g	(D) 0.98 g	(E) 7.32 g		
						ed with an unknown gas
	essure and 25.0 °C the m	ass is 1052.4 g. W (C) 54	What is the molar n (D) 56	_	(in g·mol ⁻¹)?	
(A) 28	(B) 31	(C) 34	(D) 30	(E) 62		
	Consider this re				$(g) \qquad \Delta H = -107$	78 kJ
	is released by this react				Ŧ	
(A) 1078	kJ (B) 1797 kJ	(C) 3234 kJ	(D) 5390 kJ	(E) 16170 k	J	
18	Which pair of g	ases has the same	average rate of di	ffusion at 25°C	C?	
(A) He ar	and Ne (B) N_2 and O_2	(C) N_2O and C	O_2 (D) N	H ₃ and HCl	(E) SF_6 an	ıd Xe
19	How much hea	t is required to rai	ise the temperature	of 100 g of F	Ee₂O₂ from 5 0°C	to 25 0°C? (Specific
heat Fe ₂ O ₃ , 0.634.		it is required to ful	ise the temperature	001 100. 5 01 1	0203 Hom 5.0 C	7 to 25.0°C. (Specific
	kJ (B) 1.27 kJ	(C) 0.845 kJ	(D) 0.0634 kJ	(E) 1.902 k.	J	
20	A gas has a vol	ume of 601 at a s	nressure of 0.80 at	m What is the	volume if the pr	ressure is changed to 0.20
atm at constant ten		unic or 0.0 L at a	pressure of 0.00 at	iii. What is the	volume if the pr	essure is changed to 0.20
(A) 1.5 L		(C) 12 L	(D) 24 L	(E) 0.96 L		
21	Coloulata tha ar	mount of anarous re	alassad whan 0.10	n mal of dibor	ono Roll, ronots	s with oxygen to produce
solid B ₂ O ₃ and stea		nount of energy is	eleased when 0.10	o inoi oi uiboi	ane, D ₂ 116, reacts	with oxygen to produce
Substance	ΔH _f °, (kJ.mo	l ⁻¹)				
$B_2H_6(g)$	35					
$\frac{\mathrm{B_2O_3}(s)}{\mathrm{H_2O}(l)}$	-1272 -285					
$H_2O(g)$	-241					
(A) 203 k		(C) 330 kJ	(D) 343 kJ	(E) 124 kJ		
22	Given the thern	nochemical equati	ons.			
$Br_2(l) + F$	$G_2(g) \rightarrow 2BrF(g)$	$\Delta H^{\circ} = -188 \text{ kJ}$	Olis.			
$Br_2(l) + 3$	$F_2(g) \rightarrow 2BrF(g)$ $F_2(g) \rightarrow 2BrF_3(g)$ The reaction: $BrF(g) + 1$	$\Delta H^{\circ} = -768 \text{ kJ}$				
Determine ΔH° for (A) -956	r the reaction: $BrF(g) + 1$ kJ (B) -580 kJ	$F_2(g) \rightarrow BrF_3(g)$ (C) -478 kJ	$\Delta H^{\circ} = ?$ (D) -290 kJ	(E) 590 laI		
(A) -930	KJ (D) -380 KJ	(C) -4/8 KJ	(D) -290 KJ	(E) 580 kJ		
23	The enthalpy cl	nange of which rea	action corresponds	to ΔH_f° for N	a ₂ CO ₃ (s) at 298 l	K?
(A) 2Na(s	$(s) + C(s) + 3/2O_2(g) \rightarrow 1$	$Na_2CO_3(s)$	(B) $Na_2O(s) + O(s)$	$CO_2(g) \rightarrow Na_2(g)$	$CO_3(s)$	
	$(aq) + CO_3^2 - (aq) \rightarrow Na_2 C_3$ (E) $2Na^+(aq) + 2OH^-(aq)$		(D) $Na_2(g) + Co_2(g) + H_2O$	$\cup_3(g) \rightarrow Na_2C$	$O_3(s)$	
,	,2, 2110 (aq) + 2011 (aq) CO ₂ (aq) 71 1 a	.2003(3) + 1120			
	When a bomb c		to determine the l	neat of reaction	n, which property	y of the system under
_	ost likely to remain cons per of molecules (B) pro		mperature (D) vo	dume (E) number of mole	26
(A) Hullio	er or morecures (D) pro	255urc (C) (C)	$\mathbf{m}_{\mathbf{p}}$	Turne (E)	, namoei oi mole	20

25		For the reaction	shown, which is	closest to the valu	e of Δ H? 2Cr ³⁻	$f(aq) + 3Ni(s) \rightarrow$	$2Cr(s) + 3Ni^{2+}(aq)$
	Substance	$\Delta H_{\rm f}^{\circ}$ (kJ.mol ⁻¹)					
	Cr ³⁺ (aq)	-143					
	Ni ²⁺ (aq)	-54					
L	(A) 124 kJ	(B) 89 kJ	(C) -89 kJ	(D) -124 kJ	(E) 197 kJ		
26		Which equation	rangeants the re	paction for the stan	lard anthalny of	formation AU.º	, for B ₅ H ₉ (g) at 298 K
nd 1		willen equation	represents the re	eaction for the stand	iard endialpy of	ioimanon, $\Delta \Pi_{\rm f}$, 101 b 5 n 9(g) at 296 K
		$H(g) \rightarrow B_5H_9(g)$	(B) 2	$B(s) + 3BH_3(\sigma) \rightarrow$	$B_5H_0(g)$		
	(C) $5/2$ B ₂ (g) $+$	$-9/2H_2(g) \rightarrow B_5H_9(g)$	(D) 5	$B(s) + 9/2H_2(g) \rightarrow$	$B_{s}H_{o}(g)$		
	(C) 3/2 B ₂ (g)	(E) $5/2 B_2(g) +$			D 3119(g)		
		(L) $3/2 D_2(g) +$	911(g) / D5119()	g)			
7						Substance	AII-º (l-I-mol-1)
		 411 ATT41		£11 2 I -£11			ΔH _f ° (kJ·mol ⁻¹)
	_	enthalpy, ΔH , for the		1 11.2 L of flydrog	in gas,	$H_2O(g)$	-241.8
neasu		atm pressure, to for		(D) 271011	(E) 0401 I		
	(A) -60.5 kJ	(B) -121 kJ	(C) -484 kJ	(D) -2710 kJ	(E) -242 kJ		
30		4 0 220	· 1	00 7 6 1	6.604	YY . 1404	
28		A 0.239 g sampl				mmHg at 14 °C	J. What is the gas?
	(A) chlorine	(B) nitrogen	(C) krypton	(D) xenon	(E) oxygen		
29				xerted by a 1.00 g	sample of methan	e, CH ₄ , in a 4.2:	5 L flask at 115°C?
	(A) 0.139	(B) 0.330	(C) 0.467	(D) 7.50	(E) 8.46		
30		What is the stand	ard enthalpy of	formation of MgO	(s) if 300.9 kJ is 6	evolved when 20	0.15 g of MgO(s) is
forme	d by the combusti	on of magnesium u	nder standard co	onditions?			
	(A) -601.8 kJ·		(B) -300.9 kJ ·		00.9 kJ·mol ⁻¹		
	()	(D) $+601.8 \text{ kJ} \cdot \text{m}$		(E) $+1203.6$ k.			
		()		()			
	ther experiment, l	stion of one mole of butane, $C_4H_{10}(g)$, is $2 C_4H_{10}(g) + 13$	completely com		CO ₂ (g) and H ₂ O(l), as represente	d by the following
quatr		2 041110(g) 1 13	02(g) 7 0 002((8) + 10 1120(1)			
The he	eat of combustion	, ΔH_{comb}° , for one m	nole of $C_4H_{10}(1)$	is -2877.5 kJ.			
(c) Us	ing the information	on in the table below	v, calculate the v	value of ΔH_f° for C	$H_{10}(l)$ in kJ mol	1.	
		Compou	nd /	ΔH _f °, at 25°C			
		Compou	IIu	(kJ mol ⁻¹)			
		CO ₂ (g))	-393.5			
		H ₂ O(1)		-285.8			
(d) A	0.368 mol sample	e of $C_4H_{10}(1)$ is com					
(0) 11		e amount of heat re		mbustion of 0.368	noles of hutane		
						heat 3.33 kg of	H ₂ O at 17.0°C, what i
		rature of the water?				ricat 3.33 kg of	1120 at 17.0 C, what 1
	the imai tempe	rature of the water.	The specific in	cat capacity of wat	1 15 4.104 J/g C.		

