Name		AP C	hem	//	
Chapter 5 Homework #3 Circle and write the letter of the correct answer on the line for each of the following.					
		ed container has its initial I	pressure doubled a	nd its temperature held constant. Which of	
the following is t (A) The volume (C) The density of	of the gas doubles of the gas halves		e density of the gas e size of the molec bles		
(A) The density of(B) The inside of(C) Helium mole(D) The pressure	of the helium filled balloon f the balloon is warmer tha ecules have greater kinetic beneath the balloon is gre	n is less than the surroundin	e the balloon.	est explanation for the phenomenon?	
	s 0.10 moles of C ₃ H ₇ OH(s)	e is 500. K; calculate the ap		7OH(s) decomposes completely according to ressure in the flask.	
the other holds 8(A) The volume(B) The number(C) The density of(D) The average	.0 grams of oxygen. Which of the hydrogen container of molecules in the hydrog of the hydrogen sample is kinetic energy of the hydro	h of the following statemen is the same as the volume of gen container is the same as less than that of the oxygen	ts regarding these of the oxygen conta the number of mo sample. as the average kin	iner. lecules in the oxygen container. etic energy of the oxygen molecules.	
5(A) ½	As the temperature is rais (B) $(313/293)^{1/2}$	sed from 20°C to 40°C, the (C) 313/293	average kinetic en (D) 2	ergy of neon atoms changes by a factor of (E) 4	
pressure? (A) The total kin	netic energy of the molecu of collisions per second o	les	(B) The density(D) The average	atomic gases at standard temperature and of the sample speed of the molecules	
7 conditions, whici (A) O ₂ (molar m	h of the following gases ef	fuses at approximately one (B) He (molar mass 4.0 g	-half that rate?	f 0.050 mole per minute. Under the same (C) CO ₂ (molar mass 44 grams) grams)	
oxygen is added (A) The volume	at constant temperature? of the gas increase. speed of the gas molecules		(B) The pressure(D) The total numbers	s to the gas in the tank when additional of the gas decreases. mber of gas molecules remains the same. es increases.	
9 following values	9 A sample of an ideal gas is cooled from 50.0 °C to 25.0 °C in a sealed container of constant volume. Which of the following values for the gas will decrease? I. The average molecular mass of the gas II. The average distance between the molecules III. The average speed of the molecules				
(A) I only	(B) II only	(C) III only	(D) I and III	(E) II and III	

10 Equal numbers of moles of He(g has a pinhole-sized leak, which of the following wil remaining in the vessel after some of the gas mixtur (A) $P_{He} < P_{Ne} < P_{Ar}$ (B) P_{He} (D) $P_{Ar} < P_{He} < P_{Ne}$	l be true regarding		tial pressures of the gases		
 11 Argon gas initially at 25°C is header (A) The average kinetic energy of the argon atoms (C) The pressure of the gas decreases by about 50 p (E) The pressure of the gas decreases by about 50 p (E) The pressure of the gas decreases by about 50 p (E) The pressure of the gas decreases by about 50 p (E) The pressure of the gas decreases by about 50 p (E) The pressure of the gas decreases by about 50 p (E) The pressure of the gas decreases by about 50 p (E) The pressure of the gas decreases by about 50 p (E) The pressure of the gas decreases by about 50 p (E) The pressure of the gas decreases by about 50 p (E) The pressure of the gas decreases by about 50 p (E) The pressure of the gas decreases by about 50 p (E) the pressur	does not change. bercent.	(B) The average kinetic end(D) The pressure of the gas	ergy of the argon atoms doubles.		
 12 100 grams of O₂(g) and 100 gram Which of the following statements is true? (A) Both gases would have the same pressure. (B) The average kinetic energy of the O₂ molecules (C) The average kinetic energy of the He molecules (D) There are equal numbers of He molecules and 0 (E) The pressure of the He(g) would be greater than 13 Which one of the following is No. (A) Gas particles are negligibly small. 	is is greater than that is is greater than that O_2 molecules. In that of the $O_2(g)$.	t of the He molecules. at of the O_2 molecules.	2		
(C) Gas particles don't attract each other.(E) Gas particles undergo a decrease in kinetic ener		(D) Gas particles undergo e om a region of high pressure	elastic collisions. to a region of low pressure.		
14Which of the following would ex(in grams per liter)?(A) 2 g/L(B) 4 g/L	(C) 6 g/L	(D) 8 g/L	(E) none of the above		
15 At 25° C, a sample of NH ₃ (mola conditions, which of the following gases effuses at a (A) O ₂ (molar mass 32 grams) (B) He (D) Cl ₂ (molar mass 71 g	approximately doul e (molar mass 4.0 g		(molar mass 44 grams)		
16A sample of 0.0100 mole of oxythis sample at 15°C and the same volume?(A) 0.0876 atm(B) 0.175 atm	gen gas is confined (C) 0.201 atm	l at 37°C and 0.216 atmosphe (D) 0.233 atm	(E) 0.533 atm		
17 A sample of 3.30 grams of an ide What is the molar mass of the gas? The gas constant (A) 0.0218 gram/mole (D) 45.8 grams/mole		m mol ⁻¹ K ⁻¹).	C) 37.0 grams/mole		
18A sample of 0.1973 mole of nitro of this sample at 15° C and the same volume?(A) 0.0876 atm(B) 0.175 atm	ogen gas is confine (C) 0.201 atm				
19 A sample of 5.16 grams of an ide What is the molar mass of the gas? (A) 0.0218 gram/mole (B) 16.2 grams/mole	eal gas at 150.0 °C (C) 37.0 grams/r				
			pressure is changed to 0.20 atm at (E) 6 L		
21Equal numbers of moles of $CO_2(g)$, $SO_2(g)$, and $H_2O(g)$ are placed in a glass vessel at 400. K. If the vessel has a pinhole-sized leak, which of the following will be true regarding the relative values of the partial pressures of the gases remaining in the vessel after some of the gas mixture has effused?					
(A) $P_{CO2} < P_{SO2} < P_{H2O}$ (D) $P_{H2O} < P_{CO2} < P_{SO2}$	(B) $P_{CO2} < P_{H2O}$	$< P_{SO2}$ (E) $P_{CO2} = P_{SO2} = H$	C) $P_{SO2} < P_{CO2} < P_{H2O}$ P_{H2O}		

22(A) chlorine	A 0.239 g sample of a gas in a 1 (B) nitrogen	00-mL flask exerts a press (C) krypton	ure of 1520 mmHg at 14 °C (D) xenon	What is the gas?(E) oxygen	
23 A sample of neon gas has a volume of 333 mL at $30.^{\circ}$ C and a certain pressure. What volume would it occupy if it were heated to $60.^{\circ}$ C at the same pressure?					
(A) 366 mL	(B) 399 mL	(C) 333 mL	(D) 666 mL	(E) 167 mL	
pressure is 758 tor	Hydrogen gas is collected over v r what is the pressure of hydrogen (B) 777 torr	n gas?	vapor pressure of water is (D) 48.2 torr		
25 (A) 45.2 m/s	Calculate the root mean square v (B) 142 m/s	• •) grams of helium atoms at (D) 1110 m/s	55.0 °C. (E) 1430 m/s	
 26. When a sample of oxygen gas in a closed container of constant volume is heated until its Celsius temperature is doubled, which of the following is also doubled? (A) The density of the gas (B) The potential energy of the molecules (C) The pressure of the gas (D) The average velocity of the gas molecules (E) None of the above 					
temperature? Meth (A) ¹ / ₂ as fast as he		ur times as fast as helium.	(C) twice as fas	-	
(A) high P and low	Under which conditions will a g v T (B) lov (D) high P and high T	w P and low T	(C) low P and h ehave ideally at all condition		
 29 Xenon gas initially at 35°C is heated to 105°C in a closed container. Which statement is correct? (A) The average kinetic energy of the xenon atoms does not change. (B) The average kinetic energy of the xenon atoms triples. (C) The pressure of the gas increases by 23 percent. (E) The pressure of the gas increases by about 8 percent. 					
30 (A) Ar	Which gas has a density of 2.58 (B) Ne		? (D) CH ₄	(E) Kr	
31speeds compare?	A gas mixture at 27°C and 760 r	mm Hg contains 1.0 g each	of He, O ₂ , N ₂ and CO. How	w do their average molecular	
(A) He = $O_2 = N_2 = CO$ (B) $O_2 < N_2 = CO < He$ (C) He $< CO = N_2 < O_2$ (D) CO $< O_2 < N_2 < He$ (E) He $< O_2 < CO < N_2$					
32 (in grams per liter		xpress the approximate den	sity of sulfur dioxide gas a	t 0°C and 3.00 atm pressure	
(A) 2.2 g/L	(B) 4.3 g/L	(C) 6.5 g/L	(D) 8.6 g/L	(E) 5.5 g/L	
33. $2\text{Li}(s) + 2\text{HCl}(aq) \rightarrow H_2(g) + 2\text{LiCl}(aq)$ Calculate the volume of Hydrogen produced if 3.55 grams of Li react with excess HCl if the pressure is 0.98 atm and the temperature is 29.0 °C.					
(A) 6.50 L	(B) 13.0 L	(C) 3.25 L	(D) 44.9 L	(E) 89.8 L	
 34 Three balloons are each filled to a volume of 40.0 L with Ar, Kr, and Xe, respectively. Which statement is true under the same conditions of temperature and pressure? (A) The balloons contain the same mass of gas. (B) All gases have the same kinetic energy. (C) The densities of the three gases are the same. (D) The gases will all effuse at the same rate. (E) All gases have the same root mean square velocity. 					
35 in the flask is 800 (A) 800 mm Hg	A flask contains 0.25 mole of S0 mm Hg. What is the partial press (B) 600 mm Hg			he total pressure of the gases (E) 160 mm Hg	

Questions 36–38 (A) Ne	refer to the following gases at 0°C (B) Xe	C and 1 atm. (C) O ₂	(D) CO	(E) NO	
36	Has an average atomic or molec	ular speed closest to that of	N_2 molecules at (0°C and 1 atm.	
37	Has the greatest density.				
38	Has the greatest rate of effusion	through a pinhole.			
39(A) SO ₂	A 2 L container will hold about (B) N ₂	4 g of which of the followi (C) CO ₂	ng gases at 0°C an (D) C_4H_8	nd 1 atm? (E) NH ₃	
40 (A) Ar	Which of the following gasses si (B) Cl ₂	hows most ideal behavior a (C) He	t 25°C and 1 atm ² (D) CH ₄	? (E) O ₂	
41 (A) 1,200 K	At approximately what temperat (B) 600 K	ure will 40. Grams of argo (C) 550 K	n gas at 2.0 atm oc (D) 270 K	ccupy avolume of 2 (E) 140 K	22.4 L?
42 When 25.6 g of S 0°C and 1.00 atm (A) 30 L	8H ₂ (g) 5 ₈ (s) reacts completely with an ex , produced is closest to: (B) 20 L	$+ S_8(s) \rightarrow 8H_2S(g)$ cess of $H_2(g)$ according to (C) 10 L	the equation abov (D) 5 L	ve, the volume of I (E) 2 L	$H_2S(g)$, measured at
	At which of the following temp		ld a T (A)	emperature (K) 100	Pressure (atm) 50
real gas be most l	ikely to deviate from ideal behavio	or?	(A) (B)	200	5
			(C)	300	0.01
			(D)	500	0.01
			(E)	500	1
44. Of the following gases, which has the greatest average molecular speed at 298 K? (A) Cl ₂ (g) (B) NO(g) (C) H ₂ S(g) (D) HCN(g) (E) PH ₃ (g) 45. A sample of neon gas has a volume of 248 mL at 30.°C and a certain pressure. What volume would it occupy if it were heated to 60.°C at the same pressure? (A) 226 mL (B) 273 mL (C) 278 mL (D) 496 mL (E) 124 mL					
46 A gas is collected in the flask shown here. What is the pressure exerted by the gas if the atmospheric pressure is 735 mmHg? (A) 42 mmHg (B) 693 mmHg (C) 735 mmHg (D) 777 mmHg (E) 84 mmHg					
47 A sample of oxygen gas and a sample of an unknown gas are weighed separately in the same evacuated flask. Use the data given to find the molar mass of the unknown gas (assume experiments are carried out at the same pressure and temperature). Mass of evacuated flask 124.46 g Mass of flask + oxygen 125.10 g Mass of flask + unknown gas 125.34 g (A) 22 g/mol (B) 38 g/mol (C) 44 g/mol (D) 84 g/mol (E) 66 g/mol					
48 A gas mixture at 27°C and 760 mm Hg contains 1.0 g each of He, H ₂ , N ₂ and CO ₂ . How do their average molecular speeds compare? (A) He = H ₂ = N ₂ = CO ₂ (B) CO ₂ < H ₂ = N ₂ < He (C) He < H ₂ < N ₂ < CO ₂ (D) CO ₂ < N ₂ < He < H ₂ (E) H ₂ < He < N ₂ < CO ₂					
49 (A) He and Ne	Which pair of gases has the sam (B) N ₂ and O ₂	e average rate of diffusion (C) N ₂ O and CO ₂	at 25°C? (D) NH ₃ and H	Cl (E) SF ₆	5 and Xe
50 (A) Ne	Which noble gas effuses approx (B) Ar	imately twice as fast as Kr (C) Xe	(D) Rn	(E) He	

50 Helium is often found with methane, CH ₄ . How do the diffusion rates of helium and methane compare at the same temperature? Helium diffuses					
(A) sixteen times a	(D) at the same rate as methane.		e. (C) tw alf as fast as methane.	vice as fast as methane.	
51	A see her such as a f () I at		- 4 is the sector if the second	un is shares day 0.20 stress t	
constant temperatu	A gas has a volume of 6.0 L at a tre?	a pressure of 0.80 atm. wh	at is the volume if the press	ure is changed to 0.20 atm at	
(A) 1.5 L	(B) 3.0 L	(C) 12 L	(D) 24 L	(E) 0.96 L	
52 (A) chlorine	A 0.239 g sample of a gas in a 1 (B) nitrogen	100-mL flask exerts a press (C) krypton	sure of 600 mmHg at 14 °C (D) xenon	. What is the gas? (E) oxygen	
53 (A) 0.139	What pressure (in atm) will be a (B) 0.330	exerted by a 1.00 g sample (C) 0.467	of CH ₄ , in a 4.25 L flask at (D) 7.50	115°C? (E) 8.46	
54	A gas in a closed, flexible conta	ainer is slowly cooled from	50 °C to 25 °C. What is the	e ratio of the final volume of	
the gas to its initiat (A) 2/1	l volume? Assume ideal behavio (B) 1.08/1	r. (C) 0.923/1	(D) 0.5/1	(E) 1.5/1	
55.	The mass of 560 cm ³ of a gas at	t 0°C and 1 atm is 1.60 g.	Which gas could it be?		
(A) O_2	(B) CO ₂	(C) SO ₂	(D) Cl_2	(E) Xe	
56Oxygen, which is 16 times as dense as hydrogen, diffuses:(A) 1/16 times as fast.(B) 1/4 times as fast.(D) 16 times as fast(E) equally as fast as hydrogen.					
57 (A) Ar	Which gas has a density of 0.71 (B) Ne	$g \cdot L^{-1}$ at 0°C and 1 atm? (C) CO	(D) CH ₄	(E) Kr	
58 (A) 127	What is the molar mass of a gas (B) 135	s that has a density of 5.66 (C) 141	g.L ⁻¹ at 35°C and 745 mm 1 (D) 143	Hg? (E) 146	
60					
	A sample of C_2H_6 gas initially a ressure (in mmHg)?	at 50 $^{\circ}$ C and 720 mmHg is	heated to 100 °C in a contain	iner of constant volume.	
(A) 360	(B) 540	(C) 623	(D) 831	(D) 1440	
61 (A) 2.00 g/mol	What is the molar mass of a gas (B) 4.00 g/mol	if 10.0 grams of it occupy (C) 25.0 g/mol	4.48 liters at 273 K and 1.0 (D) 50.0 g/mol	00 atm? (E) 100. g/mol	
 62 Three balloons are filled with the same number of atoms of He, Ar, and Xe, respectively. Which statement is true under the same conditions of temperature and pressure? (A) The balloons contain the same mass of gas. (B) All balloons have the same volume. (C) The densities of the three gases are the same. (D) The average speed of the different types of atoms is the same. (E) All gases have the same root mean square velocity. 					
$\begin{array}{c} 63. \\ (A) \text{ pressure} \end{array} \\ \begin{array}{c} \text{Which property is the same for 1.0 g samples of H}_2 \text{ and CH}_4 \text{ in separate 1.0 L containers at 25 °C?} \\ (B) \text{ number of molecules} \\ (D) \text{ average molecular kinetic energy} \\ \end{array} \\ \begin{array}{c} \text{(B) number of molecules} \\ \text{(E) none of the above} \end{array}$					
64	A flask contains a mixture of N g) exerts a pressure of 492 mmHg (B) 12.1 g	e(g) and Ar(g). There are 0	0.250 mol of Ne(g) which ex	xerts a pressure of 205 (E) 102 g	