Name		AP Chem		//
Chapter 5 Homewo Circle and write the letter	ork #2 er of the correct answer on the	ne line for each of the follow	wing.	
1 5(a)	$+2 E(\alpha) \rightarrow SE(\alpha)$			
For the reaction above a (A) 67.2 liters	t standard temperature and p (B) 33.6 liters	pressure, the volume of F_2 re (C) 22.4 liters	equired to produce 0.500 r (D) 11.2 liters	nole of SF ₆ is: (E) 1.5 liters
2 A sam	ple of 1.00 mole of hydroge	n gas is mixed with 5.00 m	ole of helium gas. If the t	otal pressure of the system is
3.00 atmospheres, the pa	artial pressure of the helium $(\mathbf{D}) = 1.00$ stres	gas is:	(\mathbf{D}) 2.00 stars	(E) 2.50 stra
(A) 0.300 ann	(b) 1.00 attii	(C) 1.30 atm	(D) 2.00 attii	(E) 2.50 ann
3 The de	ensity of a certain gas was m	easured to be 2.68 grams pe	er liter at 3.00 atm. and 27	°C. What is the molecular
(A) 16.0	(B) 20.0	(C) 22.0	(D) 60.0	(E) 132
4 At the	same temperature, the RMS	S speed of O_2 gas is how ma	any times that of SO ₂ gas ?	
(A) 1.4	(B) 2	(C) 4	(D) .5	(E) .25
5 The de (A) 1.3 gram/liter	ensity of oxygen gas at 25°C (B) 2.6 gram/liter	and 4.0 atmospheres press (C) 3.2 gram/liter	ure is approximately (D) 5.2 gram/liter	(E) 7.3 gram/liter
6. A hyd	rocarbon with an empirical	formula CH2 is found to ha	we a mass of 5.01 grams a	t a pressure of 1.00 atm, a
temperature of 0°C., and	a volume of 2.00 liters. A p	possible formula for this	hydrocarbon is:	
(A) CH_2	$(\mathbf{B}) \mathbf{C}_2 \mathbf{H}_4$	$(C) C_3 H_6$	(D) C_4H_8	(E) $C_5 H_{10}$
7 A sam following values for the I. The density of the g	pple of an ideal gas is cooled gas will decrease? gas. II. The average	from 50.0° C to 25.0°C in distance between the molec	a sealed container of const cules III. The averag	tant volume. Which of the e speed of the molecules.
(A) I only	(B) II only	(C) III only	(D) I and III	(E) II and III
8. Collis	ions between gas particles a	nd container walls result in	a measurable pressure. Pr	essure varies:
I. Directly with	n Kelvin temperature III. Directly wit	II. Inversely with the concentration of gas p	h the volume of the contain particles.	ner
(A) I only	(B) II only	(C) I and II only	(D) I, II, and III	(E) I and III only
9 A 66.0	Og sample of solid CO ₂ vapo	rizes completely to fill an e	empty plastic bag to a final	volume of 22.4 L at 0° C.
What is the final pressur (A) 380 mm Hg	e in the sealed bag? (B) 507 mm Hg	(C) 760 mm Hg	(D) 1140 mm Hg	(E) 1520 mm Hg
		(0) ,	(2) 11 10 111119	(1) 1020 1111 119
10 A mi the partial pressure of th (A) 21.0 g	e nitrogen gas is 480 mm of (B) 42.0 g	Hg, what is the mass of the (C) 56.0 g	ms of helium, exerts a tota e nitrogen gas in the mixtu (D) 28.0 g	l pressure of 800. mm Hg. If re? (E) 6.00 g
11 The d	lensity of an unknown gas is	4.20 grams per liter at 3.00) atmospheres pressure and	1 127 °C. What is the
(A) 14.6	(B) 46.0	(C) 88.0	(D) 94.1	(E) 138
12A 2.00	D-liter sample of nitrogen ga	s at 27 °C and 600. millime	ters of mercury is heated u	intil it occupies a volume of
(A) 68 °C	(B) 120 °C	(C) 477 °C	°C (D) 677 °C	(E) 950. °C
13A hyd	rocarbon gas with an empiri	cal formula CH ₂ has a dens	ity of 1.88 grams per liter	at 0 °C and 1.00
atmospheres. A possible (A) CH ₂	formula for the hydrocarbo (B) C_2H_4	n is (C) C_3H_6	(D) C ₄ H ₈	(E) C ₅ H ₁₀

14 A condisplacing water in a wa weight of the gas, but do (A) Mass of the compound (D) Ba	npound is heated to produce ter-filled flask inverted in a bes NOT need to be measure and used in the experiment arometric pressure	e a gas whose molecular we trough of water. Which of ed during the experiment? (B) Temperature of the v (E) Vo	eight is to be determined the following is necessa vater in the trough (lume of water displaced	The gas is collected by ry to calculate the molecularC) Vapor pressure of the water from the flask			
15 Hydro 24°C, the vapor pressure (A) 22 mm Hg	ogen gas is collected over w e of water is 22 millimeters (B) 733 mm Hg	ater at 24°C. The total pres of mercury. What is the par (C) 755 mm Hg	tial pressure of the sample is 75. (D) 760 mm Hg	5 millimeters of mercury. At ogen gas? (E) 777 mm Hg			
 16 Which of the following is true at the triple point of a pure substance? (A) The vapor pressure of the solid phase always equals the vapor pressure of the liquid phase. (B) The temperature is always 0.01 K lower that the normal melting point. (C) The liquid and gas phases of the substance always have the same density and are therefore indistinguishable. (D) The solid phase always melts if the pressure increases at constant temperature. (E) The liquid phase always vaporizes if the pressure increases at constant temperature. 17 A hot-air balloon rises. Which of the following is the best explanation for this observation? (A) The pressure on the walls of the balloon increases with increasing temperature. 							
(B) The difference in temperature between the air inside and outside the balloon produces convection currents.(C) The cooler air outside the balloon pushes in on the walls of the balloon.(D) The rate of diffusion of cooler air is less than that of warmer air.(E) The air density inside the balloon is less than that of the surrounding air.							
18 Whic (A) SO ₂	h of the following gases dev (B) Ne	viates most from ideal beha (C) CH ₄	vior? (D) N ₂	(E) H ₂			
19 NH ₄ NO ₃ (s) \rightarrow N ₂ O(g) + 2 H ₂ O(g) A 0.03 mol sample of NH ₄ NO ₃ (s) is placed in a 1 L evacuated flask, which is then sealed and heated. NH ₄ NO ₃ decomposes completely according to the balanced equation above. The total pressure in the flask measured at 400 K is closest to which of the following? (A) 3 atm (B) 1 atm (C) 0.5 atm (D) 0.1 atm (E) 0.03 atm							
20 Equal masses of He and Ne are placed in a sealed container. What is the partial pressure of He if the total pressure in the container is 6 atm?							
(A) 1 atm	(B) 2 atm	(C) 3 atm 0.50 mel complete f	(D) 4 atm	(E) 5 atm			
21At sta the same: (A) average molecular k 22Three evacuated rigid tank. If t is closest to	inetic energy (D) effusion rate e gases in the amounts show the total pressure in the tank	(B) average molecular sp n in the table to the right ar is 3.0 atm at 25°C, the par	weed (E) density we added to a previously tial pressure of $N_2(g)$ in	(C) volume $\frac{Gas \qquad Amount}{Ar \qquad 0.35 \text{ mol}}$ the tank $\frac{CH_4 \qquad 0.90 \text{ mol}}{N_2 \qquad 0.25 \text{ mol}}$			
(A) 0.75 atm	(B) 0.50 atm 5° C C L affunction of a rate of	(C) 0.33 atm	(D) 0.25 atm (E)	0.17 atm			
At 2. fast as fast? (A) He	(B) CH_4	(C) NO	(D) N_2O_3	(E) Cl_2O_3			
24An ideal gas in a rigid sealed container is heated from 330 K to 430 K. Which of the following DO NOT change?I. The density of the gasII. The average distance between moleculesIII. The average distance between moleculesIII. The average speed of the molecules							
(A) I only	(B) III only	(C) I & II only	(D) I & III only	(E) I, II, & III			
25 Wha are injected into a rigid 2 (A) 760 mmHg	t is the total pressure after 2 22.4 L container 273 K? (B) 2280 mmHg	.00 moles of H ₂ (g), 1.00 m (C) 4560 mmHg	ole of O ₂ (g), 2.00 moles (D) 9120 mmHg	of N ₂ (g) and 1.00 mole CO ₂ (g) (E) 63,500 mmHg			