Name	AP Chem	/
Chapter 5 Homework Answer each of the following questions	ions clearly. Show all work when necessary. 18 points.	
a. Using the ideal gas law.b. Using the van der Waalsc. Many gases deviate from	756.0 grams of N ₂ in a 20.00 L container at -85°C. (1 pt) s equation (a = 1.39; b = 0.0391) (1 pt) m "ideal" behavior at low temperatures and high pressures. Folume is held constant, and the temperature rises to -5.0°C	
causes sodium azide (NaN ₃) to deco $2NaN_3(s) \rightarrow 2Na(s) + 3N_2(s)$ a. What mass of NaN ₃ (s) r -35.00 °C? (1 pt) b. What is the density of n c. How many molecules of	vere impact causes a steel ball to compress a spring and electrophysical explosively according to the following reaction: (g) must be reacted to inflate an air bag to 70.0 L at a pressure itrogen gas at this temperature? (1 pt) f nitrogen are present in the volume of gases calculated in rogen actually produced at the above conditions? (1 pt)	of 733 mm Hg and a temperature of

 b. Calculate the root mean square velocity of each gas at 15° c. Determine the density of each gas at the above conditions. d. Determine the volume of each gas at the above conditions. 	2 pts) C. (2 pts) . (2 pts) . (2 pts)	nd contains 8.20 grams	of each substance.
e. If it is determined that it takes oxygen, (O_2) 41 seconds to onitrogen, (N_2) at the above conditions? (1 pt)	completely effuse. H	ow long does it take	
		5	
4. One of the chemical controversies of the 19 th century concerned the beryllium was a trivalent element (Be ³⁺) and it gave an oxide with the			
peryllium was a trivalent element (Be ³⁺) and it gave an oxide with the 13.5 for beryllium. In formulating his periodic table, Mendeleev		resulted in a calculate	d atomic mass of
peryllium was a trivalent element (Be ³⁺) and it gave an oxide with the a 3.5 for beryllium. In formulating his periodic table, Mendeleev proposed that beryllium was divalent (Be ²⁺) and it gave an oxide			
peryllium was a trivalent element (Be ³⁺) and it gave an oxide with the 13.5 for beryllium. In formulating his periodic table, Mendeleev proposed that beryllium was divalent (Be ²⁺) and it gave an oxide with the formula BeO. This assumption gives an atomic mass of 0.0. In 1894 A. Combes (<i>Comptes Rendus</i> 1894, p. 1221) reacted	formula Be ₂ O ₃ . This	Test 1 0.2022 g 22.6 cm ³	Test 2 0.2224 g 26.0 cm ³
peryllium was a trivalent element (Be^{3+}) and it gave an oxide with the 13.5 for beryllium. In formulating his periodic table, Mendeleev proposed that beryllium was divalent (Be^{2+}) and it gave an oxide with the formula BeO. This assumption gives an atomic mass of 0.0. In 1894 A. Combes (<i>Comptes Rendus</i> 1894, p. 1221) reacted peryllium with the anion $C_5H_7O_2^{-1}$ and measured the density of the	Mass Volume Temperature	Test 1 0.2022 g 22.6 cm ³ 13°C	Test 2 0.2224 g 26.0 cm ³ 17°C
peryllium was a trivalent element (Be ³⁺) and it gave an oxide with the 13.5 for beryllium. In formulating his periodic table, Mendeleev proposed that beryllium was divalent (Be ²⁺) and it gave an oxide with the formula BeO. This assumption gives an atomic mass of 0.0. In 1894 A. Combes (<i>Comptes Rendus</i> 1894, p. 1221) reacted peryllium with the anion $C_5H_7O_2^-$ and measured the density of the gaseous product. Combes's data for two different experiments are	formula Be ₂ O ₃ . This Mass Volume	Test 1 0.2022 g 22.6 cm ³	Test 2 0.2224 g 26.0 cm ³
peryllium was a trivalent element (Be ³⁺) and it gave an oxide with the 3.5 for beryllium. In formulating his periodic table, Mendeleev proposed that beryllium was divalent (Be ²⁺) and it gave an oxide with the formula BeO. This assumption gives an atomic mass of 0.0. In 1894 A. Combes (<i>Comptes Rendus</i> 1894, p. 1221) reacted peryllium with the anion $C_5H_7O_2^-$ and measured the density of the gaseous product. Combes's data for two different experiments are as follows: The formula and the product of the p	Mass Volume Temperature Pressure will be Be(C ₅ H ₇ O ₂) ₂ ;	Test 1 0.2022 g 22.6 cm ³ 13°C 765.2 mm Hg	Test 2 0.2224 g 26.0 cm ³ 17°C 764.6 mm Hg mula will be
peryllium was a trivalent element (Be ³⁺) and it gave an oxide with the 13.5 for beryllium. In formulating his periodic table, Mendeleev proposed that beryllium was divalent (Be ²⁺) and it gave an oxide with the formula BeO. This assumption gives an atomic mass of 0.0. In 1894 A. Combes (<i>Comptes Rendus</i> 1894, p. 1221) reacted	Mass Volume Temperature Pressure will be Be(C ₅ H ₇ O ₂) ₂ ;	Test 1 0.2022 g 22.6 cm ³ 13°C 765.2 mm Hg	Test 2 0.2224 g 26.0 cm ³ 17°C 764.6 mm Hg mula will be
peryllium was a trivalent element (Be ³⁺) and it gave an oxide with the 13.5 for beryllium. In formulating his periodic table, Mendeleev proposed that beryllium was divalent (Be ²⁺) and it gave an oxide with the formula BeO. This assumption gives an atomic mass of 0.0. In 1894 A. Combes (<i>Comptes Rendus</i> 1894, p. 1221) reacted peryllium with the anion $C_5H_7O_2^-$ and measured the density of the gaseous product. Combes's data for two different experiments are as follows: If beryllium is a divalent metal, the molecular formula of the product of $C_5H_7O_2$. Show how Combes's data help to confirm that beryllium	Mass Volume Temperature Pressure will be Be(C ₅ H ₇ O ₂) ₂ ;	Test 1 0.2022 g 22.6 cm ³ 13°C 765.2 mm Hg	Test 2 0.2224 g 26.0 cm³ 17°C 764.6 mm Hg mula will be
peryllium was a trivalent element (Be ³⁺) and it gave an oxide with the 3.5 for beryllium. In formulating his periodic table, Mendeleev proposed that beryllium was divalent (Be ²⁺) and it gave an oxide with the formula BeO. This assumption gives an atomic mass of 0.0. In 1894 A. Combes (<i>Comptes Rendus</i> 1894, p. 1221) reacted peryllium with the anion $C_5H_7O_2^-$ and measured the density of the gaseous product. Combes's data for two different experiments are as follows: The formula and the product of the p	Mass Volume Temperature Pressure will be Be(C ₅ H ₇ O ₂) ₂ ;	Test 1 0.2022 g 22.6 cm ³ 13°C 765.2 mm Hg	Test 2 0.2224 g 26.0 cm³ 17°C 764.6 mm Hg mula will be

Gas Law Formulas			
$\mathbf{P}_{\text{total}} = \mathbf{P}_1 + \mathbf{P}_2 + \mathbf{P}_3 \dots$	Dalton's Law of Partial Pressure		
$\mathbf{X}_{i} = \mathbf{n}_{i}/\mathbf{n}_{\text{total}} = \mathbf{P}_{i}/\mathbf{P}_{\text{total}}$	Mole Fraction		
$\mathbf{P}_{1}\mathbf{V}_{1}=\mathbf{P}_{2}\mathbf{V}_{2}$	Boyle's Law		
$\mathbf{V}_{\scriptscriptstyle 1}/\mathbf{T}_{\scriptscriptstyle 1} = \mathbf{V}_{\scriptscriptstyle 2}/\mathbf{T}_{\scriptscriptstyle 2}$	Charles' Law		
$\mathbf{V}_{\scriptscriptstyle 1}/\ \mathbf{n}_{\scriptscriptstyle 1} = \mathbf{V}_{\scriptscriptstyle 2}/\ \mathbf{n}_{\scriptscriptstyle 2}$	Avogadro's Law		
$\mathbf{P}_{\scriptscriptstyle 1}/\mathbf{T}_{\scriptscriptstyle 1}=\mathbf{P}_{\scriptscriptstyle 2}/\mathbf{T}_{\scriptscriptstyle 2}$	Gay-Lussac's Law		
$\mathbf{P}_{1}\mathbf{V}_{1}/\mathbf{T}_{1}=\mathbf{P}_{2}\mathbf{V}_{2}/\mathbf{T}_{2}$	Combined Gas Law		
$\frac{\text{Rate}_{\mathbf{B}}}{\text{Rate}_{\mathbf{A}}} = \frac{-\sqrt{\mathbf{MM}_{\mathbf{A}}}}{-\sqrt{\mathbf{MM}_{\mathbf{B}}}}$	Graham's Law		
PV = nRT R = 8.3145 L kPa/mol K or R= 0.08206 L atm/mol K	Ideal Gas Law		
(mm) P = dRT mm = molar mass d = density R= 0.08206 L atm/mol K	Gas Density/Molar Mass		
$v_{rms} = \sqrt{(3\text{RT} / \text{M})}$ $M = \text{molar mass in kg} / \text{mol}$ $R = 8.3145 \text{ J/mol K}$	Root Mean Square Velocity		
$[P_{obs} + a(n/V)^2] \times (V - nb) = nRT$	van der Waals Equation		
Standard Atmospheric Pressure:			

Standard Atmospheric Pressure: 1 atm = 760 torr = 760 mm Hg = 101.3 kPa = 14.7 psi