| Name | AP Chemistry | | | |---|--|--|--| | Chapter 16 HW 3: Due 3/15/17. Con I usually pick the harder one(for me) problem 2 but skipped problem 1 on answers. | to grade. Sometimes I pick the | second one because it would be | e weird if a student did | | | · · · · · · · · · · · · · · · · · · · | | Power 4 | | 1. An external direct-current power sup | | | Supply | | platinum electrodes immersed in a beak | | | | | CuSO ₄ (aq) at 25°C, as shown in the dia | | 5 -Ar - 1 | M TOUR TOUR | | operates, copper metal is deposited onto | | The Same of | | | O ₂ (g) is produced at the other electrode | . The two reduction half- | 500 000 000 | CONTAIN 1 | | reactions for the overall reaction that or | ccurs in the cell are | | 2 2 2 | | shown in the table below. | E9(\$/) | | | | Half-Reaction | E°(V) | 2+(nn) + 2 0 - Cn(s) + | | | $O_2(g) + 4 H^+(aq) + 4 e^- \rightarrow 2 H_2O(1)$ | +1.23 Ct | $^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$ | | | $Cu^{2+}(aq) + 2 e^{-} \rightarrow Cu(s)$ | +0.34 | Ø I | ** | | | 0.1 | | | | (a) On the diagram, indicate the direction | on of electron flow in the | | | | wire. | C 1 . 1 | | | | (b) Write a balanced net ionic equation | | | Downyo . | | (c) Predict the algebraic sign of ΔG° fo (d) Calculate the value of ΔG° for the r | | 1011. | 1 - P | | An electric current of 1.80 amps passes | | | | | (e) Calculate the mass, in grams, of the | | | | | (f) Calculate the dry volume, in liters n | easured at 25°C and 1.26 atm of | the O ₂ (a) that is produced | nemina b | | (1) Calculate the dry volume, in mers in | iodistrica de 25 o directi. Con constituire de 1.20 | and S2(g) that is produced. | A CONTRACTOR OF THE | | N | 70/4/11 - 1 - 1 - 1 - 1 | | | | _ 74 | | | | | b. 2420 + 2Cu | - 2Cu + Oz | HH. | 2.45 | | | | V work | 2 1/4 | | | | | * | | c. DG= 4 ble | VP8.0=3 | F13 - 1 0 | | | (-11010) : Cal | | TIO.01 : 17. | 4 - V | | | | 7 | | | d. AG=-n+2 | | | | | No = (-4) 964858 | 6.89 | | | | | 9.877 | | | | Da=+343165 | | | A A A A | | 1 1000000000000000000000000000000000000 | · /- L2/L1/L2/L2/L2/L3/L3/L3/L3/L3/L3/L3/L3/L3/L3/L3/L3/L3/ | 2.2/ 22000 | a ALA . | | | 1 | 11 DC 18/2 | CF 211110 | | e. 40 min 6086 | 11.80C/1 male | - 1 mos (0) \$63 | .55g - 1.42g | | | Sec 964850 | 2 Znole- 1 nol | e 0 1 d) | | lain | Sec 196485 | - 1 - WOLF LIMBE | 0 | | | | | | | P Ha (LORGE) | 1.80C / mole | 1 mal 02 0 | D.0112 mg | | | 101110 | | J. OTTE MER | | - I longer | 1 Sec 964850 | 1 4 note | | | | | | | | | / | V cas F | | | V= NRT | · (0.0115)(0. | 1. (895) 60580 | 0.217L | | P | | 16 | | | | | | | | | | | 1 | | | | | | | 7 | | | | | | | | | | 2. A 730. mL sample of a 0.60 M silver nitrate solution is electrolyzed. The solution was subjected to current of 2.00 amperes for 55 minutes. The solution became progressively more acidic as the reaction progressed. (a) Write the two half-reactions that occur and indicate which takes place at the anode and which takes place at the cathode. (b) Write the overall balanced chemical equation. (c) What is the minimum voltage required for this electrolysis to occur. (d) If the gas produced in the electrolysis is collected at 1.16 atm and 40.°C, what volume of oxygen gas was produced? (e) What mass of solid silver is produced in the electrolysis? | |---| | 0 4Act -4e 4Ac &= 0.80V colodo | | ZHO - 4e + 44+ 202 E=-1.23 grade | | 1 1 2 2 2 2 2 4 4 1 2 2 2 2 2 2 2 2 2 2 | | 6. 240 + 4Ag + 02 E= -0.43V | | 0.10 10 10 113 | | c. graner man 0.45 | | d 55min 60sc 12.000 / mil 1/moloz 10.0171 mol. | | [min] 1sec 96485 (4mple-) O2 | | | | PV=NFT | | V= NRT . (0.017)(0.08206)(00.313) = (0.379L) | | P 1.16 | | | | e. AtM mass (Z.OX3300X1079) - 7.389 Ag | | Fe- (96485X1) | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | L - Covall Francis Defell see (rival) | | 2015/10.0 . 20 for / Dani / DUST / SEL 124 / 124 2 . 2 | | STANT 1 DESPORT SEL MENT ! | | (I) + 12 = 1. (2/2) (20120-c) (2/0-0) - 7.34 ·V | | | | | | *** *** *** *** *** *** *** *** *** ** | | |