| Name | AP Chemistry | |---|---| | | er 15 HW #3: Due 12/10/19 Complete both free response questions. One will be graded. Show all Box and clearly label all final answers | | (a) A sat
PbCl ₂ is
(b) A sat
concentr
(c) Solid
molar co | were the following questions that relate to solubility of salts of lead and barium. Figurated solution is prepared by adding excess PbCl ₂ (s) to distilled water to form 1.0 L of solution at 25°C. The solubility of found to be 0.4415 grams/100. ml H ₂ O. The chemical equation for the dissolution of PbCl ₂ (s) in water is shown below. PbCl ₂ (s) \rightleftharpoons Pb ²⁺ (aq) + 2Cl ⁻ (aq) (i) Write the equilibrium-constant expression for the equation. (ii) Calculate the molar concentration of Cl ⁻ (aq) in the solution. (iii) Calculate the value of the equilibrium constant, K _{sp} . urated solution is prepared by adding PbCl ₂ (s) to distilled water to form 4.0 L of solution at 25°C. What are the molar ations of Pb ²⁺ (aq) and Cl ⁻ (aq) in the solution? Justify your answer. NaCl is added to a saturated solution of PbCl ₂ at 25°C. Assuming that the volume of the solution does not change, does the neentration of Pb ²⁺ (aq) in the solution increase, decrease, or remain the same? Justify your answer. Falue of K _{sp} for the salt BaSO ₄ is 1.5 × 10 ⁻⁹ . (i) When a 117.0 mL sample of 2.16 × 10 ⁻² M Ba(NO ₃) ₂ is added to 229.0 mL of 5.19 × 10 ⁻² M Na ₂ SO ₄ does a precipitate form (you must justify with calculations). (ii) Calculate the concentration of the Ba ²⁺ at equilibrium. | #2. Answer the following questions about the solubility of the salts Li₃PO₄ and PbCl₂. Assume that hydrolysis effects are negligible. The equation for the dissolution of Li₃PO₄(s) is shown below. Li₃PO₄(s) ⇒ 3 Li⁺(aq) + PO₄³⁻(aq) K₅p = 3.2 × 10⁻⁰ at 25°C (a) Write the equilibrium-constant expression for the dissolution of Li₃PO₄(s). (b) Assuming that volume changes are negligible, calculate the maximum number of moles of Li₃PO₄(s) that can dissolve in (i) 0.50 L of water at 25°C (ii) 0.50 L of 0.20 M LiNO₃ at 25°C The equation for the dissolution of PbCl₂ is shown below. PbCl₂(s) ⇒ Pb²⁺(aq) + 2 Cl⁻(aq) K₅p = 1.6 × 10⁻⁵ at 25°C (c) Calculate the concentration of Cl⁻(aq) in a saturated solution of PbCl₂ at 25°C. Calculate the minimum volume of water, in mL, that must evaporate from the container before solid PbCl₂ can precipitate. | | | |--|--|--| |