| Name | _ AP Chem | | |--|--|--------------------------------| | Chapter 14 HW - #4 (Due 11/15/2019)
Complete both free response questions.
final answers | One will be graded. Show all w | ork. Box and clearly label all | | 1. Monochloroacetic acid, HC ₂ H ₂ ClO ₂ , is a skin irr from the face and improve complexion. The value (a) Calculate the pH for a 0.30 M solution (b) Calculate the percent dissociation 0.30 (c) Calculate the pH for a 0.025 M solution (d) Calculate the percent dissociation 0.00 (e) Even though percent dissociation increase. | of K _a for monochloroacetic acid is 1.35 n of monochloroacetic acid. O M solution of monochloroacetic acid. on of monochloroacetic acid. Solution of monochloroacetic acid. | x 10 ⁻³ . | <u> </u> | • | 2. HF(aq) is a weak acid. It reacts with NaOH(aq) according to the reaction represented below. HF(aq) + OH⁻(aq) ⇒ H₂O(l) + F⁻(aq) A volume of 35 mL of 0.39 M NaOH(aq) is added to 45 mL of 0.40 M HF(aq) solution. Assume that volumes are additive. (a) Calculate the number of moles of HF(aq) remaining in the solution. (b) Calculate the molar concentration of F⁻(aq) in the solution. | |--| | In a reaction vessel, 0.900 mol of Ba(NO ₃) ₂ (s) and 0.400 mol of H ₃ PO ₄ (aq) are combined with deionized water to a final volume of 2.00 L. The reaction represented below occurs. 3Ba(NO ₃) ₂ (aq) + 2H ₃ PO ₄ (aq) → Ba ₃ (PO ₄) ₂ (s) + 6HNO ₃ (aq) (c) Calculate the mass of Ba ₃ (PO ₄) ₂ (s) formed. (d) What is the concentration, in mol L ⁻¹ , of the nitrate ion, NO ₃ ⁻ (aq), after the reaction reaches completion? | | (e) What is the concentration, in mol L^{-1} , of the barium ion, Ba^{2+} (aq), after the reaction reaches completion? |