
Name		
Name		

AP Chemistry

HW 12_2: Due 3/3/2020 Complete all free response and multiple choice questions. All questions will be graded. Show all work. Box and clearly label all final free response answers.

1. In the gas phase at 500.°C, cyclopropane reacts to form propene in a first-order reaction. The figure shows the natural logarithm of the concentration of cyclopropane (in mol/L) plotted versus time.

C. 1. 1. 1. 1. - first and an note constant b

-2.500 -3.000 -3.500 -4.500 0 200 400 600 800 1000 time (s)	 a. Calculate the first-order rate constant, <i>k</i>. b. Determine the half -life of cyclopropane. c. Determine the initial concentration of cyclopropane in this experiment. d. Determine the concentration of cyclopropane after 1200. seconds.

Circle and write the choice answer on the line in front of the question.

1 A by the fact that raising the		action mixture is often l	neated to increase the ra	ate of reaction. This is best explained
(A) increases the heat of(C) increases the vapor p		B) decreases the energy D) increases the averag		reactants.
2 For $\Delta[A] = \Delta[C]$	or the reaction, $2A + B = (B) - \Delta[A] = \Delta[C]$	\rightarrow C, which relationshi (C) $-2\Delta[A] = \Delta[C]$	p is correct? (D) $-\Delta[A] = 2$	Δ[C]
3 W (A) The time required for (B) The time required for (C) The rate of disappear (D) The rate of formation	the concentration of recone-half of reactants to ance of reactants in mo	actants to drop below 0 disappear. l.L ⁻¹ .time ⁻¹ .		eaction?
4 T (A) temperatures.				ne reaction rate at different (D) times on the reaction curve.
5 Fo (A) changes in rate with o (C) the concentrations of				obtained from the balanced equation. The different concentrations of A and B
6 W (A) zero order		ction for which the unit (C) second order		nd the units of the rate are mol L^{-1} s ⁻¹ er order
reaction? I. Increasing the	or the reaction A + B \rightarrow concentration of A (B) II only	II. Increasing the		e(s) will increase the rate of the
8 W (A) the amount of reactar (C) the length of each hal 9 TI I. endothermic	nt that disappears in each f-life ne rates of which reaction reactions	h half life (B) the c (D) the r ons are increased when II. exothermic rea	oncentration of the reaction the temperature is raise actions	
(A) I only 10V reaction coordinate diagr (A) 1 and 2 only (C) 2 and 3 only		l to the system represer		Energy 1
11A chemical reaction EXCE (A) adding a catalyst. (C) increasing the temper	(B)	expected to affect the removing some product decreasing the reactant	ts.	
12	$3O_2(g) \rightarrow 2N_2(g) + 6H$	$_{2}O(g)$	what is the rate of disap	
13 A	to be 75% complete?	a first-order reaction ha		$3 \times 10^{-3} \text{ s}^{-1}$. How much time is
(A) 100 s	(B) 210 s	(C) 420 s	(D) 630 s	