
Name_____

SOL Questions – Chapter 9

For each of the following, fill in the correct answer on the BLUE side of the scantron.

11. The specific heat capacity of a substance is the quantity of heat required to change the temperature of 1 gram of a substance by -

a.	1°C	b.	5°C
c.	10°C	d.	100°C

12.	Which of the following substances in the chart to
the	right would be the best conductor of heat?

- b. alcohol a. aluminum c. water
 - d. wood

What probably causes water to have the highest 13. specific heat of the substances listed to the right? a. molecular size b. molecular mass

c. strong hydrogen bonds d. high density of ice

Specific Heat Capacities of Some Common Substances			
Specific Heat Capacity			
Substance	(cal/g °C)		
Aluminum	0.21		
Alcohol	0.58		
Water	1.00		
Wood	0.42		

14. _____A catalyst accelerates a chemical reaction because the –

- a. catalyst decreases the number of collisions in a reaction
- b. activation energy of the reaction is lowered in the presence of a catalyst
- c. catalyst decreases the concentration of the reactants
- d. temperature of the reaction increases due to the catalyst

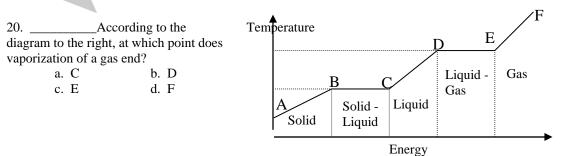
If the heat of fusion of water is 3.4×10^2 J/g, the amount of heat energy required to change 15.0 15. ____ grams of ice at 0°C to 15.0 grams of water at 0°C is -

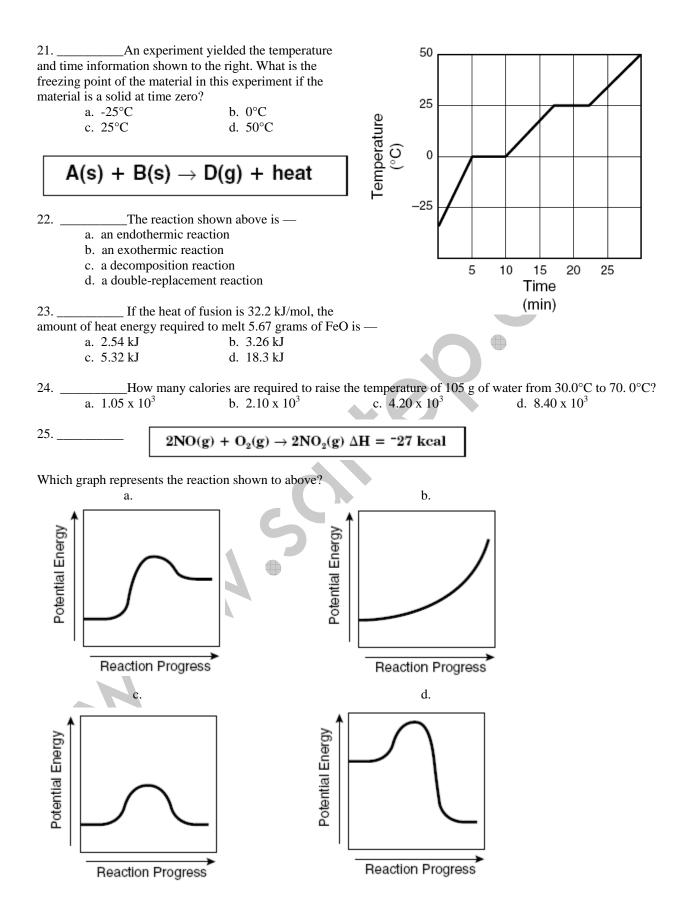
a. $3.4 \times 10^2 \text{ J}$ b. $2.4 \times 10^3 \text{ J}$ d. $1.0 \times 10^4 \text{ J}$ c. $5.1 \times 10^3 \text{ J}$

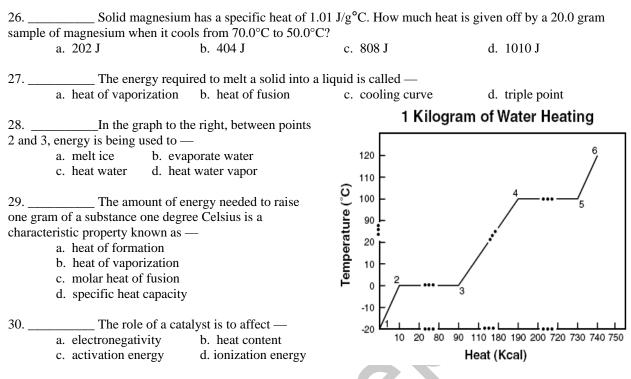
16. _____Which phase change involves the absorption of heat?

- a. gas to liquid b. liquid to solid
- c. liquid to gas d. gas to solid

_ What probably causes chloroform to have 17. the lowest heat of vaporization of the substances listed in the chart to the right?


- a. smallest size of the molecules listed
- b. smallest mass of the molecules listed
- c. smallest intermolecular forces of attraction
- d. fewest number of bonds


Substance	Heat of Vaporization at the Boiling Point
Water (H ₂ O)	529 calories per gram
Alcohol (CH ₃ CH ₂ OH)	204 calories per gram
Chloroform (CHCl ₃)	59 calories per gram


18. _____ Which is NOT necessary in calculating the heat of fusion for ice?

- a. the mass of the ice b. the temperature change of the water and the ice
 - c. the heat of fusion of water d. all are necessary

According to the diagram below, as energy is added to a solid, at which point does melting begin? 19. a. A b. B c. C d. D

Which of these statements describes what happens to the molecules of a solid as the temperature is 31. lowered to absolute $zero(-273^{\circ}C)$?

- a. They begin to take up more space.
- b. They become farther apart.

c. Their kinetic energy gradually increases to a maximum.

d. Their motion gradually decreases and eventually stops.

Catalytic converters made of palladium (Pd) reduce automobile pollution by catalyzing the reaction 32. between unburned hydrocarbons and oxygen. How does Pd increase the rate of this reaction?

a. By cooling the reactants

- b. By splitting the oxygen atoms
- c. By giving the hydrocarbons a negative charge
- d. By decreasing the activation energy

The boiling point of ethanol is 78.3°C. The boiling point of ethanol on the Kelvin scale is 33. approximately b. 178 K

Water and ammonia have different molar heats of vaporization.

a. 26 K

c. 351 K

d. 451 K

Molar Heat of Vaporization

H_2O	40.7 kJ/mole
NH_3	23.4 kJ/mole

a. have stronger intermolecular attractions b. occupy larger molecular volumes

The best interpretation, at the molecular level, is that water molecules —

- c. set up stronger repulsive nuclear forces
- d. collide more frequently with each other

____ What is the amount of heat required to raise 200.0 g of water from 22.00°C to 100.0°C? Specific 35. heat of water is 4.180 J/g °C b. 6,521 joules

a. 652.1 joules

34.

c. 65,210 joules

d. 652,100 joules

 36 Examine the graph of the temperature of a compound versus heat added to the compound. Which of the following most likely happens as the compound is heated from point <i>x</i> to point <i>y</i>? a. The phase of the compound changes. b. The mass of the compound is increasing. c. The molecules of the compound lose potential energy. d. The molecules of the compound are breaking apart into atoms. 37 To determine if a reaction is exothermic, a student should 					
use a:					
a. pH probe	b. motion sensor	c. pressu	re sensor d	. temperature pro	be
38 As heat is added to a substance undergoing a phase change, the temperature remains constant because the energy is being used to a. break covalent bonds b. lower the specific heat capacity c. overcome intermolecular forces d. oppose electron cloud repulsions 39 The accepted value for the specific heat of aluminum is $0.897 \text{ J/g}^{\circ}\text{C}$. Which of the following sets of specific heat values for aluminum, calculated from a prior experiment, has the greatest accuracy and precision? a. $0.847 \text{ J/g}^{\circ}\text{C}$, $0.847 \text{ J/g}^{\circ}\text{C}$, $0.848 \text{ J/g}^{\circ}\text{C}$ b. $0.896 \text{ J/g}^{\circ}\text{C}$, $0.899 \text{ J/g}^{\circ}\text{C}$, $0.896 \text{ J/g}^{\circ}\text{C}$ c. $0.897 \text{ J/g}^{\circ}\text{C}$, $1.04 \text{ J/g}^{\circ}\text{C}$, $1.03 \text{ J/g}^{\circ}\text{C}$ d. $0.936 \text{ J/g}^{\circ}\text{C}$, $0.876 \text{ J/g}^{\circ}\text{C}$, $0.879 \text{ J/g}^{\circ}\text{C}$ 40 AB + energy $\Rightarrow A + B$ The general equation shown is a reaction that is an					
11 The table shows the specific heat Substance Heat Conscitu $1/e^{2}C$					
41 11	e table shows the specific h	eat	Substance	Heat C	anacity I/g°C
capacity of four sub-	ne table shows the specific h stances.For an equal mass of	feach	Substance Aluminum		apacity J/g°C 0.900
capacity of four substance, which on	stances.For an equal mass of e will require the least amou	f each int of			
capacity of four subs substance, which on heat to raise its temp	stances.For an equal mass of e will require the least amou perature from 20°C to 30°C?	f each int of	Aluminum		0.900
capacity of four substance, which on	stances.For an equal mass of e will require the least amou perature from 20°C to 30°C? b.	f each int of	Aluminum Glass		0.900 0.50
capacity of four subsubstance, which on heat to raise its temp a. Aluminum c. Carbon dioxide 42 Th of a 30.0 g block of a. 0.540 J c. 1350 J 43 A	stances.For an equal mass of e will require the least amou berature from 20°C to 30°C? b. d. the specific heat of aluminum aluminum from 25.0 °C to 7 b. 1.50 J d. 1670 J student attempts to measure its specific heat capacity, in	f each int of Glass Water is 0.900 J/g°C. 5°C ? the specific hea as 2.14, 2.11, 2	Aluminum Glass Carbon dioxide Water How much heat i	is required to raise	0.900 0.50 0.843 4.18 the temperature
capacity of four substance, which on heat to raise its temp a. Aluminum c. Carbon dioxide 42 Th of a 30.0 g block of a. 0.540 J c. 1350 J 43 A trials. She measures liquid should be reco a. 2.122 J/g°C c. 2.1 J/g°C	stances.For an equal mass of e will require the least amou berature from 20°C to 30°C? b. d. the specific heat of aluminum aluminum from 25.0 °C to 7 b. 1.50 J d. 1670 J student attempts to measure its specific heat capacity, in orded as — b. 2.12 J/g°C	f each int of Glass Water is 0.900 J/g°C. '5°C ? the specific hea as 2.14, 2.11, 2 C	Aluminum Glass Carbon dioxide Water How much heat i at capacity of an un 2.13, 2.12, and 2.11 Molar Heat o	is required to raise nknown liquid thro . The specific hea f Fusion and Mel	0.900 0.50 0.843 4.18 • the temperature bugh repeated t capacity of the ting Point for
capacity of four substance, which on heat to raise its temp a. Aluminum c. Carbon dioxide 42 Th of a 30.0 g block of a. 0.540 J c. 1350 J 43 A trials. She measures liquid should be reco a. 2.122 J/g°C c. 2.1 J/g°C 44 Us	stances.For an equal mass of e will require the least amou berature from 20°C to 30°C? b. d. the specific heat of aluminum aluminum from 25.0 °C to 7 b. 1.50 J d. 1670 J student attempts to measure its specific heat capacity, in orded as — b. 2.12 J/g°	f each int of Glass Water is 0.900 J/g°C. 5°C ? the specific hea as 2.14, 2.11, 2 C hart to the	Aluminum Glass Carbon dioxide Water How much heat i at capacity of an un 2.13, 2.12, and 2.11 Molar Heat o S	is required to raise nknown liquid thro I. The specific hea f Fusion and Mel elected Substance	0.900 0.50 0.843 4.18 the temperature bugh repeated t capacity of the ting Point for es
capacity of four subs substance, which on heat to raise its temp a. Aluminum c. Carbon dioxide 42 Th of a 30.0 g block of a. 0.540 J c. 1350 J 43 A trials. She measures liquid should be reco a. 2.122 J/g°C c. 2.1 J/g°C 44 Us right, which substan heat when 1.00 mol	stances. For an equal mass of e will require the least amound because from 20°C to 30°C? b. d. the specific heat of aluminum aluminum from 25.0 °C to 7 b. 1.50 J d. 1670 J student attempts to measure its specific heat capacity, in orded as — b. 2.12 J/g°C d. 2 J/g°C ting the information in the ch ce will release the greatest and is frozen?	f each int of Glass Water F is 0.900 J/g°C. 5°C ? the specific her as 2.14, 2.11, 2 C hart to the mount of	Aluminum Glass Carbon dioxide Water How much heat i at capacity of an un 2.13, 2.12, and 2.11 Molar Heat o	is required to raise nknown liquid thro The specific hea f Fusion and Mel elected Substance Melting Pt.	0.900 0.50 0.843 4.18 • the temperature bugh repeated t capacity of the ting Point for
capacity of four substance, which on heat to raise its temp a. Aluminum c. Carbon dioxide 42 Th of a 30.0 g block of a. 0.540 J c. 1350 J 43 A trials. She measures liquid should be reco a. 2.122 J/g°C c. 2.1 J/g°C 44 Us right, which substan	stances.For an equal mass of e will require the least amou berature from 20°C to 30°C? b. d. the specific heat of aluminum aluminum from 25.0 °C to 7 b. 1.50 J d. 1670 J student attempts to measure its specific heat capacity, in orded as — b. 2.12 J/g°C d. 2 J/g°C ing the information in the ch ce will release the greatest a is frozen? b.	f each int of Glass Water is 0.900 J/g°C. 5°C ? the specific hea as 2.14, 2.11, 2 C hart to the	Aluminum Glass Carbon dioxide Water How much heat i at capacity of an un 2.13, 2.12, and 2.11 Molar Heat o S	is required to raise nknown liquid thro I. The specific hea f Fusion and Mel elected Substance	0.900 0.50 0.843 4.18 the temperature bugh repeated t capacity of the ting Point for es

Substance	(°C)
Argon	-190
Benzene	5.5
Mercury	-39

0

Water

2.29

6.01