Name		Honors	Chemistry		//
Thermodynamics Part I: Please wri	Practice Test te the letter of the c	orrect answer on the l	line.		
Use the following a (A) ΔG	nswers for problems (B) ΔS	1-4. You may use an a (C) Heat of vapor	answer more tha ization (D) He	in once. at of fusion	(E) Specific heat
1	If it has a negative	e value for a process, th	en the process o	occurs spontaneous	ly.
2	This is a measure	of how the disorder or	positional proba	bility in a system i	is changing.
3.	This is the energy	given off when a subst	ance condenses.		
4. degree Celsius	This is the amoun	t of energy need to rais	e the temperatur	re of one gram of a	substance one
5. The reaction above towards absolute zet (A) ΔS an (B) ΔS an (C) ΔS is (D) ΔS is (E) ΔS an	2Al(s) + 3Cl is not spontaneous a ero. Which of the fol d Δ H are both negative d Δ H are both positive negative and Δ H is p positive and Δ H is n d Δ H are both equal	$_{2}(g) \rightarrow 2AlCl_{3}(s)$ t standard conditions, b lowing is true at standar ve ve positive egative to zero	out becomes spor and conditions?	ntaneous as the ten	nperature decreases
6.	$_{2H_{2}(g)} + O_{2}(g)$	(g) →2H ₂ O(g)			
Based on the inform	nation in the table be	low, what is the ΔH for	t the above react	tion?	
	Bo	nd Average Bo	nd Energy (kJ/	mol)	
	H-	H	432		
	<u> </u>	:0 	495		
		H	467		
(A) +460	kJ (B) +425 kJ	(C) +509 kJ	(D) -50)9 kJ	(E) -460 kJ

7. Based on the information given below, what is the ΔH for the following reaction: $C_2H_2(g) + 5/2 O_2 \rightarrow 2CO_2(g) + H_2O$

		$C_2H_2(g) + 5/2$	$J_2 \neq 2CO_2(g) +$	H_2O	
		Reac	tion	$\Delta \mathbf{H}$	
		$C(s) + O_2(g)$	$\rightarrow CO_2(g)$	$\Delta H = -390 \text{ kJ/mol}$	
	\checkmark	$H_2(g) + \frac{1}{2}O_2(g)$	$(g) \rightarrow H_2O(l)$	$\Delta H = -290 \text{ kJ/mol}$	
		$2C(s) + H_2(g)$	$\rightarrow C_2H_2(g)$	$\Delta H = +230 \text{ kJ/mol}$	
	(A) -1300 kJ	(B) -1070 kJ	(C) -840 kJ	(D)-780 kJ	(E) -680 kJ
8.	(A) I only	e addition of a ca I. The e II. The en III. The ad (B) II only	talyst will have enthalpy will deen ntropy will decr ctivation energy (C) III only	which of the following effects crease. ease. will decrease. (D) I and II only	s on a chemical reaction? y (E) II and III only
9.	For	which of the fol I. NaCl II. 2H ₂ (g III. CaCO	lowing process (s) $\rightarrow Na^+(aq) + O_2(g) \rightarrow 2H$ $y_3(s) \rightarrow CaO(s) + O_2(g) - O_2(g) + O_2(g) $	es will ΔS be positive? $CI^{-}(aq)$ $I_{2}O(g)$ $+ CO_{2}(g)$	
	(A) I only	(B) II only	(C) I and II o	only (D) I and III on	ly (E) 1, II and III

10. _____ The energy diagram for the reaction $X + Y \rightarrow Z$ is shown to the right. The addition of a catalyst to this reaction would cause a change in which of the indicated energy differences?

(A) I only	(B) II only
(C) III only	(D) I and II only
(E) I, II, and III	

Part II: Solve each of the following. Please box your final answers. 1 Consider the reaction: $O_2(g) + NO(g) \rightarrow O_2(g) + NO_2(g)$

1. Consider the reaction. $O_3(g)$	$-NO(g) \neq O_2(g)$	g) + $NO_2(g)$			
	$O_3(g)$	NO(g)	$O_2(g)$	$NO_2(g)$	
Standard enthalpy of formation, ΔH_f^{o} , at 25°C (kJ mol ⁻¹)	143	90.	0	33	
Standard entropy of formation, ΔS° , at 25°C (J mol ⁻¹ K ⁻¹)	239	211	205	240.	

(a) Referring to the data in the table above, calculate the standard enthalpy change, ΔH° , for the reaction at 25°C. Be sure to show your work.

(b) Referring to the data in the table above, calculate the standard entropy change, ΔS° , for the reaction at 25°C. Be sure to show your work.

(c) Calculate ΔG for the reaction at 25°C.

(d) Assuming negligible changes in ΔH and ΔS , at what temperature would the reaction NOT be spontaneous?

2 NO(g) + O₂(g)→2 NO₂(g) $\Delta H^{\circ} = -114.1$ kJ, $\Delta S^{\circ} = -146.5$ J K⁻¹

2.

The reaction represented above is one that contributes significantly to the formation of photochemical smog.

(a) Calculate the quantity of heat released when 73.1 g of NO(g) is converted to $NO_2(g)$.

(b) Calculate the value of the standard free-energy change, ΔG° .

(c) Indicate whether the value of ΔG° would become more negative, less negative, or remain unchanged as the temperature is increased. Justify your answer.

(d) Use the data in the table below to calculate the value of the standard molar entropy, S° for $O_2(g)$ at 25°C.

	Standard Molar Entropy, S° (J K ⁻¹ mol ⁻¹)
NO(g)	210.8
$NO_2(g)$	240.1

(e) Use the data in the table below to calculate the bond energy, in kJ mol⁻¹, of the nitrogen-oxygen bond in NO₂. Assume that the bonds in the NO₂ molecule are equivalent (i.e., they have the same energy).

	Bond
	Energy
	$(kJ mol^{-1})$
Nitrogen-oxygen bond in NO	607
Oxygen-oxygen bond in O ₂	495
Nitrogen-oxygen bond in NO ₂	?

3. Calculate the amount of energy needed	l to heat 2.25 kilograms of water fro	m -14 °C to 175 °C. You must draw a
diagram to support your calculations.	$C(s)= 2.09 \text{ J/g}^{\circ}C, C(l)= 4.184 \text{ J/g}^{\circ}C$	$C(g) = 2.01 \text{J/g}^{\circ}\text{C}$, Melting Point: 0°C,
Boiling Point: 100°C, H _{fus} = 335.0 J/g, H	_{vap} = 2259.0 J/g	

a. Stage 1: _____ b. Stage 2: _____ c. Stage 3: _____ d. Stage 4: _____ e. Stage 5: _____ f. Total: -----