
Name		Honors Chemistry	//
-	e Review Problems the following. Circle the correct answer	war and write the letter o	on the line
Solve each of th	te following. Circle the correct answ	wer and write the letter c	on the fine.
1	For which of these is ΔH_f° not	equal to zero?	
(A) Br ₂ (<i>l</i>)	(B) Fe(s)		(D) $O_3(g)$
(A) $Bi_2(i)$	(B) FC(3)	(C) 12(3)	$(D) O_3(g)$
2	The enthalpy change for which	ch reaction represents the	e standard enthalpy of formation for
hydrogen cyanic			
(A) H(g) + C(gr	raphite) + N(g) \rightarrow HCN(g) $\frac{1}{2}$ H ₂ (g) + C(graphite) + $\frac{1}{2}$ N ₂ (g)	(B) ${}^{1}/_{2}H_{2}(g) + C(grap)$	$hite) + \frac{1}{2} N_2(g) \rightarrow HCN(g)$
$(C) HCN(g) \rightarrow$	$\frac{1}{2}$ H ₂ (g) + C(graphite) + $\frac{1}{2}$ N ₂ (g)	(D) $H_2(g) + 2C(graph)$	$hite) + N_2(g) \rightarrow 2HCN(g)$
3.	What is the standard enthalpy	of formation of MgO(s) if 300.9 kJ is evolved when 20.15 g o
	ed by the combustion of magnesium		
(A) –601.8 kJ·m			(D) +601.8 kJ·mol ⁻¹
4	W1:1 1 1 11 11 11 11 11 11 11 11 11 11 11	1	0.52.00
4. (A) $Br_2(l) \rightarrow Br$	Which change occurs with the		
(A) $\text{Bi}_2(\iota) \to \text{Bi}$ (C) $\text{H}_2\text{O}(s) \to \text{H}$		$(graphite) \rightarrow C(diamona)$ $Cl(g) + H_2O(l) \rightarrow H_3O^+(l)$	
(0) 1120(0)	(D) 11	01(8) 1120(1) 1130 (
5	What are the signs of ΔH° and	d ΔS° for a reaction that	is spontaneous at all temperatures?
ΔH°	ΔS°		
(A) +	+		
(B) + (C) -	-		
· /	+		
(D) –	_		
6.	For the formation of one mol	e of each of these gases	from their elements, which reaction is
most endotherm			
(A) CO (ΔH_f° =	-110.5 kJ·mol ⁻¹)	(B) NO ₂ ($\Delta H_f^{\circ} = +33$	
(C) O ₃ ($\Delta H_f^{\circ} = -$	+142.2 kJ·mol ⁻¹)	(D) $SO_2 (\Delta H_f^{\circ} = -300)$	0.4 kJ·mol ⁻¹)
7	$\underline{\qquad} 4\text{Li}(s) + \text{O}_2(g) \Rightarrow 2\text{Li}_2\text{O}$	(a)	
/. Δt 25°C ΔH° fa	Δ 4L1(S) + O ₂ (g) Δ 2L1 ₂ O or this reaction is 508 8 kiloioules	(S) ner male of Li ₂ O(s) form	ned. What mass of Li should be reacte
	g) in order to release 150. kJ?		ned. What mass of Li should be reacte
(A) 0.874 g	(B) 1.74 g	(C) 3.48 g	(D) 6.98 g
()		. , .	. ,
8	When these substances are ar	ranged in order of increa	asing S° values at 25 °C, what is the
correct order?	N CI()	(D) N. C1() C1 () N	T /)
(A) $Na(s)$, $Cl_2(g)$		(B) NaCl(s), Cl ₂ (g), Na(s) (D) Na(s), NaCl(s), Cl ₂ (g)	
(C) Cl ₂ (g), NaC	$\mathcal{L}(s)$, $\mathcal{N}a(s)$	(D) $Na(s)$, $NaCl(s)$, C	212(8)
9.	$2NOCl(g) \rightarrow 2NO(g) +$	$Cl_2(g)$ $\Delta H = 38 \text{ kJ}$	
	energy for the forward reaction is 6	62 kJ, what is the activat	ion energy for the reverse reaction?
(A) 24 kJ	(B) 38 kJ (C) 62 kJ		-24 kJ
10	Which reaction accura with	an increase in entreman	
(A) $\frac{10.}{2C(s) + O_2(s)}$	Which reaction occurs with $(a) \rightarrow 2CO(a)$	an increase in entropy? (B) $2H_2S(g) + SO_2(g)$	$\rightarrow 3S(s) + 2H_2O(a)$
	$g \rightarrow 2CO(g)$ $g_2(g) \rightarrow 2Fe_2O_3(s)$	(B) $2H_2S(g) + 3O_2(g)$ (D) $CO(g) + 2H_2(g)$	
(2) 5(5) . 50	210/ 22 - 3(0/	(2) 20(8) 2112(8)	3(-)
11	Consider this reaction.	$2N_2H_4(l) + N_2O_4(l) =$	$\Rightarrow 3N_2(g) + 4H_2O(g) \Delta H = -1078 \text{ kJ}$
How much ener	gy is released by this reaction durin	g the formation of 140.	g of $N_2(g)$?
(A) 1078 kJ	(B) 1797 kJ	(C) 3234 kJ	(D) 5390 kJ

