Honors Chemistry

Hess's Law

- Since enthalpy is a state function, the change in enthalpy in going from some initial state to some final state is independent of the pathway. Thus, in going from a particular set of reactants to a particular set of products, the change in enthalpy is the same whether the reaction takes place in one step or a series of steps. This principle is known as Hess's law.
- Example: $N_2 + 2O_2 \rightarrow 2NO_2$ $\Delta H = 68 \text{ kJ}$ This reaction can be carried out in two distinct steps: $1 N + 0 \rightarrow 2NO$

1.	$N_2 + O_2 \rightarrow ZNO$	$\Delta H_1 = 180 \text{ kJ}$
2.	$2NO + O_2 \rightarrow 2NO_2$	$\Delta H_2 = -112 \text{ kJ}$
	$N_2 + 2O_2 \rightarrow 2NO_2$	$\Delta H = 68 \text{ kJ}$
т	ATT I ATT	

Note: $\Delta H = \Delta H_1 + \Delta H_2$

The two 2NO are cancelled out because one appears as a reactant and the other as a product.

When using Hess's law, it is important to understand two characteristics of ΔH for a reaction:

- If a reaction is reversed, the sign of ΔH is also reversed. 0
 - If the coefficients in a balanced equation are multiplied by an integer, the value of ΔH is multiplied by 0 the same integer.
- Example: What is the standard enthalpy change for the reaction of lead(II) chloride with chlorine to give lead(IV) chloride?

 $PbCl_2(s) + Cl_2(g) \rightarrow PbCl_4(l)$ The following is known: $Pb(s) + Cl_2(g) \rightarrow PbCl_2(s)$ $\Delta H = -359.4 \text{ kJ}$ $Pb(s) + 2Cl_2(g) \rightarrow PbCl_4(l)$ $\Delta H = -329.3 \text{ kJ}$

Solution:

Reaction 1 has to be flipped so that $PbCl_2$ is a reactant. The value of ΔH is also changed from (-) to (+).

 $PbCl_2(s) \rightarrow Pb(s) + Cl_2(g)$ $\Delta H = 359.4 \text{ kJ}$

Reaction 2 does not need to be changed because $PbCl_4$ is already a product.

 $Pb(s) + 2Cl_2(g) \rightarrow PbCl_4(l)$ $\Delta H = -329.3 \text{ kJ}$

The two reactions are summed:

$PbCl_2(s) \rightarrow Pb(s) + Cl_2(g)$	$\Delta H = 359.4 \text{ kJ}$
$\underline{Pb(s)} + 2\underline{Cl}_2(g) \rightarrow \underline{PbCl}_4(l)$	$\Delta H = -329.3 \text{ kJ}$

$$PbCl_2(s) + Cl_2(g) \rightarrow PbCl_4(l)$$
 $\Delta H = 30.1 \text{ kJ}$

Since there were two Cl_2 on the reactant side and one on the product side, (2-1 = 1) one Cl_2 remains as a reactant.

Example: What is the standard enthalpy change for the reaction below?

 $2N_2(s) + 5O_2(g) \rightarrow 2N_2O_5(g)$

ie following is known:	
$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$	$\Delta H = -285.8 \text{ kJ}$
$N_2O_5(g) + H_2O(1) \rightarrow 2HNO_3(1)$	$\Delta H = -76.6 \text{ kJ}$
$\frac{1}{2}N_2(g) + \frac{3}{2}O_2(g) + \frac{1}{2}H_2(g) \rightarrow HNO_3(l)$	$\Delta H = -174.1 \text{ kJ}$

Solution:

Th

Reaction 2 is flipped and multiplied by 2 in order to get 2 moles N_2O_5 on the product side. The sign of ΔH is changed from (-) to (+) because of the flip and the value is doubled because the coefficients are doubled.

> $4HNO_3(1) \rightarrow 2N_2O_5(g) + 2H_2O(1)$ $\Delta H = 153.2 \text{ kJ}$

Reaction 3 is multiplied by 4 in order to get 2 N₂ molecules. The Δ H value is also multiplied by 4. $\Lambda H =$ -696.4 kJ

$$2N_2(g) + 6O_2(g) + 2H_2(g) \rightarrow 4HNO_3(1)$$
 $\Delta H = -696$

Reaction 1 has to be flipped and multiplied by 2 so that the H₂ can cancel the H₂ from reaction 3 above. Δ H is also doubled and the sign is changed from (-) to (+).

 $2H_2O(1) \rightarrow 2H_2(g) + O_2(g)$ $\Delta H = 571.6 \text{ kJ}$ The reactions are summed: $4HNO_3(1) \rightarrow 2N_2O_5(1) + 2H_2O(1)$ $\Delta H = 153.2 \text{ kJ}$ $2N_2(g) + 6O_2(g) + 2H_2(g) \rightarrow 4HNO_3(l)$ $\Delta H = -696.4 \text{ kJ}$ $2H_2O(1) \rightarrow 2H_2(g) + O_2(g)$ $\Delta H = 571.6 \text{ kJ}$ $2N_2(s) + 5O_2(g) \rightarrow 2N_2O_5(g)$ $\Delta H = 28.4 \text{ kJ}$

Name

8-mp	ms. Show all work! 394 kJ 396 kJ	Answer: ∆H = +2 kJ
	e 67.7 kJ e 9.7 kJ	Answer: ∆H = -58.0 kJ
	-427 kJ 495 kJ -199 kJ	Answer: ∆H = -233 kJ
4. Calculate the heat of reaction for the following reaction: $C_{6}H_{4}(OH)_{2}(aq) + H_{2}O_{2}(aq) \rightarrow C_{6}H_{4}O_{2}(q)$ The following is known. $C_{6}H_{4}(OH)_{2}(aq) \rightarrow C_{6}H_{4}O_{2}(aq) + H_{2}(g)$ $H_{2}(g) + O_{2}(g) \rightarrow H_{2}O_{2}(aq)$ $H_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow H_{2}O(g)$ $H_{2}O(g) \rightarrow H_{2}O(g)$	$\Delta H = 177.4 \text{ kJ}$ $\Delta H = -191.2 \text{ kJ}$ $\Delta H = -241.8 \text{ kJ}$ $\Delta H = -43.8 \text{ kJ}$	Answer: ∆H = -202.6 kJ
5. Calculate the heat of reaction for the following reaction: $Ca(s) + C(s) + 3/2O_{2}(g) \Rightarrow CaCO_{3}(s)$ The following is known. $Ca(s) + 2C(s) \Rightarrow CaC_{2}(s)$ $CO_{2}(g) \Rightarrow C(s) + O_{2}(g)$ $CaCO_{3}(s) + CO_{2}(g) \Rightarrow CaC_{2}(s) + 5/2O_{2}(s)$	$\Delta H = -62.8 \text{ kJ}$ $\Delta H = 393.5 \text{ kJ}$ g) $\Delta H = 1538 \text{ kJ}$	Answer: ∆H = -1207 kJ
 6. Calculate the heat of reaction for the following reaction 2P(s) + 5Cl₂(g) → 2PCl₅(s) The following is known. PCl₅(s) → PCl₃(g) + Cl₂(g) 2P(s) + 3Cl₂(g) → 2PCl₃(g) 	$\Delta H = 87.9 \text{ kJ}$ $\Delta H = -574 \text{ kJ}$	Answer: ∆ H = -750. kJ

7. Use the information in the table to calculate the enthalpy of this reaction.

$C_2H_6(g) + 7/2 O_2(g) -$	15		
Reaction	ΔH_{f}° , kJ·mol ⁻¹)	
$2C(s) + 3H_2(g) \rightarrow C_2H_6(g)$	-84.7		
$C(s) + O_2(g) \rightarrow CO_2(g)$	-393.5		
$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$	-285.8		
(A) –764 kJ (B) –1560 kJ	(C) –1664 kJ	(D) –3120 kJ	(E) -595 kJ
8. Given these reactions:			
$A \rightarrow 2B$ $\Delta H = 40 \text{ kJ}$			
$B \rightarrow C$ $\Delta H = -50 \text{ kJ}$			
$2C \rightarrow D$ $\Delta H = -20 \text{ kJ}$	10		
Calculate ΔH for the reaction: $\mathbf{D} + \mathbf{A} \rightarrow (\mathbf{A}) - 100 \text{ kJ}$ (B) -60 kJ	4C (C) -40 kJ	(D) 100 kJ	(E) -30 kJ
9. $C_{2}H_{6}(g) + 7/2O_{2}(g) \rightarrow 2CO_{2}(g)$	+2UO(z)	$\Delta H^{\circ} = -1427.7 \text{ kJ}$	
9. $C_2H_6(g) + 7/2O_2(g) \rightarrow 2CO_2(g)$ If the enthalpy of vaporization for $H_2O(g)$	$1 + 3\Pi_2 O(g)$	$\Delta H^{\circ} = -1427.7$ KJ at is ΔH° for this reaction i	$f H_2O(1)$ is formed instead of
$H_2O(g)$?			
(Å) –1295.7 kJ (B) –1383.7 kJ	(C) –1471.7 kJ	(D) –1559.7 kJ	(E) -1515.7 kJ
10. Given the thermochemical equations	5:		
$Br_2(l) + F_2(g) \rightarrow 2BrF(g)$	$\Delta H^{\circ} = -188 \text{ kJ}$		
$\operatorname{Br}_2(1) + 3F_2(g) \rightarrow 2\operatorname{Br}F_3(g)$	$\Delta H^\circ = -768 \text{ kJ}$		
Determine ΔH° for the reaction: BrF(g)		$\Delta H^{\circ} = ?$	(E) 590 I-I
(A) -956 kJ (B) -580 kJ	(C) -290 kJ	(D) -478 kJ	(E) 580 kJ
11. Given these two standard enthalpies	s of formation:		
Reaction 1: $S(s) + O_2(g) \rightleftharpoons S$	and the second s	-295 kJ/mole	
Reaction 2: $S(s) + \frac{3}{2}O_2(g) \rightleftharpoons$	$=$ SO ₃ (g) $\Delta H^{\circ} = -$	-395 kJ/mole	
What is the heat of reaction for $2SO_2(g)$			ane?
(A) -1380 kJ/mole (B) -690 kJ/mole	(C) -295 kJ/mol		(E) -100. kJ/mole
12. Given the following information: Reaction 1: $H_2(g) + \frac{1}{2}O_2(g) =$	H O(1)	$\Delta H^{\circ} = -286 \text{ kJ}$	
Reaction 1: $\Pi_2(g) + 2 O_2(g) \rightarrow$ Reaction 2: $CO_2(g) \rightarrow C(s) + 0$		$\Delta H^{\circ} = 394 \text{ kJ}$	
Reaction 3: $2CO_2(g) + H_2O(l)$	_		
	2	5) <u>AII 1500 KJ</u>	
Find ΔH° for the reaction: $C_2H_2(g) \rightarrow 2$		(\mathbf{D}) 22 (1)	
(A) -226 kJ (B) -113 kJ	(C) 113 kJ	(D) 226 kJ	(E) 452 kJ

Additional Practice Problems

- 1. Calculate the ΔH° the following problems using Hess's law.
 - Given:

$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$	$\Delta H^{\circ} = -23 \text{ kJ}$
$3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2$	$\Delta H^{\circ} = -39 \text{ kJ}$
$Fe_3O_4 + CO \rightarrow 3FeO + CO_2$	$\Delta H^{\circ} = +18 \text{ kJ}$

Find: FeO + CO \rightarrow Fe + CO₂

2. Calculate the ΔH° the following problems using Hess's law.

Given:

$P_4 + 6Cl_2 \rightarrow 4PCl_3$	$\Delta H^\circ = -1225.6 \text{ kJ}$
$P_4 + 5O_2 \rightarrow P_4O_{10}$	$\Delta H^\circ = -2967.3 \text{ kJ}$
$PCl_3 + Cl_2 \rightarrow PCl_5$	$\Delta H^{\circ} = -84.2 \text{ kJ}$
$PCl_3 + \frac{1}{2}O_2 \rightarrow Cl_3PO$	$\Delta H^\circ = -285.7 \text{ kJ}$

Find: $P_4O_{10} + 6PCl_5 \rightarrow 10Cl_3PO$

3. Calculate the ΔH° the following problems using Hess's law.

Given:

$Sr + \frac{1}{2}O_2 \rightarrow SrO$	$\Delta H^{\circ} = -592 \text{ kJ}$
$SrO + CO_2 \rightarrow SrCO_3$	$\Delta H^{\circ} = -234 \text{ kJ}$
$C + O_2 \rightarrow CO_2$	$\Delta H^{\circ} = -394 \text{ kJ}$

Find: Sr + C + 3/2 O₂ \rightarrow SrCO₃