Honors Chemistry

Name

Covalent Compounds & Intermolecular Forces

A covalent compound is a compound in which the outer energy level (valence) electrons are shared by two or more atoms. Covalent bonds form between non-metals. Covalent bonds can consists of one pair of shared electrons (a single bond), two pairs of shared electrons (a double bond) or three pairs of shared electrons (a triple bond). In bond length, longest to shortest: single > double > triple. In bond strength, strongest to weakest: triple > double > single. Intermediate bonds observed in resonance structures fill in accordingly in terms of length and strength.

Comparing Ionic and Covalent Compounds

comparing rome and covarent compounds	
Ionic Compounds	Covalent Compounds
Composed of a metal and a non-metal	Composed of two non-metals
Atoms gain or lose electrons to form a compound	Atoms share electrons in a compound
Atoms are arranged into a rigid crystal structure	Atoms form distinct molecules
Have high melting and boiling points	Have low melting and boiling points
Conduct electricity when dissolved in water	Do not conduct electricity when dissolved in water
Chemical formulas are called formula units	Chemical formulas are called molecular formulas
Highly soluble in water	High to low solubility in water
Solid at room temperature	Can be solid, liquid or gas at room temperature

Intermolecular Forces

- The solid and liquid states of matter are referred to as the condensed states of matter.
- Intramolecular forces exist between atoms (covalent bonds).
- Intermolecular forces exist between molecules (dipole-dipole forces, hydrogen bonds and London forces) .
- When a substance **changes state** the molecules remain intact. The changes in state are due to changes in the intermolecular forces between the molecules rather than in those within the molecules (intramolecular forces).

Dipole-Dipole Forces

- Molecules with polar bonds often behave in an electric field as if they had a center of positive charge and a center of negative charge. They exhibit a dipole moment.
- Molecules with dipole moments can attract each other electrostatically by lining up so that the positive and negative ends are close to each other. This is called a **dipole-dipole** attraction.
- **Dipole-dipole** forces are typically only about 1% as strong as covalent or ionic bonds and they rapidly become weaker as the distance between the dipoles increases.

Hydrogen Bonding

- Particularly strong **dipole-dipole interactions** are seen in molecules in which hydrogen is bound to a highly electronegative atom, such as nitrogen, oxygen or fluorine.
- **Two factors** account for the strength of these interactions: the great polarity of the bond and the close approach of the **dipoles**, allowed by the very small size of the hydrogen atom. Because dipole-dipole attractions of this type are so unusually strong, they are called hydrogen bonding. Below, note the hydrogen bonding that occurs between water molecules.

properties such as: why it appears to crawl up the sides of a glass, why ice is less dense than water, why water and ammonia have relatively high boiling points despite their low molecular masses, how capillary action works, etc.

/ /

London Dispersion Forces

- London dispersion forces are thought to be caused by the movement of electrons. As the number of electrons increases, the London dispersion force increases. London dispersion forces explain why fluorine and chlorine are gases, bromine is a liquid and iodine is a solid. London dispersion forces are the weakest of all intermolecular attractions and occur between 2 or more non-polar molecules.
- Even molecules without dipole moments must exert forces on each other. We know this because even the noble gases exist in solid and liquid states under certain conditions.
- The forces that exist between noble gas atoms and nonpolar molecules are called **London dispersion forces**.
- As the electrons move about the nucleus, a momentary nonsymmetrical electron distribution can develop that produces a temporary dipolar arrangement of charge.

The formation of this temporary dipole can, in turn, affect the electron distribution of a neighboring atom. The instantaneous dipole that occurs accidentally in a given atom can then induce a similar dipole in a neighboring atom as seen in the diagram to the right.

- For these reactions to produce a solid, the motions of the atoms must be greatly slowed down. This explains why noble gases have such low freezing points.
- Freezing point increases going down a group. The principle cause for this trend is that as the atomic number increases, the number of electrons increases, and there is an increased chance of the occurrence of momentary dipole interactions. This phenomenon is described using the term **polarizability** which indicates the ease at which the electron "cloud" of an atom can be distorted to give a dipolar distribution.
- The importance of London dispersion forces increases greatly as the number of electrons in an atom increases.

Homework:

1. Identify each of the following as being a property of **ionic compounds** or **covalent compounds**.

a	_ Have high melting and boiling points
b	_ High to low solubility in water
c	_ Chemical formulas are called molecular formulas
d	_ Atoms are arranged into a rigid crystal structure
e	_ Have low melting and boiling points
f	_ Conduct electricity when dissolved in water
g	_ Atoms share electrons in a compound
h	_ Atoms form distinct molecules
i,	Solid at room temperature
j.	_ Composed of two non-metals
k	_ Highly soluble in water
1	_ Composed of a metal and a non-metal
m	Atoms gain or lose electrons to form a compound
n	_ Do not conduct electricity when dissolved in water
0	_ Can be solid, liquid or gas at room temperature
p	_ Chemical formulas are called formula units

2. Identify if each of the following bonds exists between atoms (intramolecular) or between molecules (intermolecular).

. . .

.

a	 ionic bond	b	hydrogen bonds
c.	 London dispersion force	d	non-polar covalent bond
e.	polar covalent bond	f.	dipole interactions

. .

.

3. Put the following bonds in order from **strongest to weakest** bond strength and **longest to shortest** bond length: single bond, double bond, triple bond. Strength Length

č		
a	a	
b	b	
c	c	

4. Put the following **intramolecular** bonds in order of strength from strongest to weakest: ionic bond, non-polar covalent bond, and polar covalent bond.

Bond	Strength
------	----------

a.	 	
b.	 	
c.	 	

5 Put the following **intermolecular** forces in order of strength from strongest to weakest: London dispersion forces, dipole interactions, hydrogen bonds. Bond Strength

a	
b	
c	(ϕ)

4

6. Identify if the following properties are being properties of London dispersion forces, dipole interactions or hydrogen bonds.

a	Attractive forces that occur when a hydrogen atom is covalently bonded to a highly electronegative atom.
b	Interactions occur when polar molecules are attracted to one another.
c	This intermolecular force explains why F_2 is a gas and I_2 is a solid at room temperature.
d	This is the weakest of all intermolecular forces.
e	Forces that are caused by the movement of electrons.
f	This is the strongest of all intermolecular forces.
g	This intermolecular force is similar to the attraction in ionic compounds.

7. Choose the best answer for each of the following.

a	Which of the following com a. sulfur trioxide	pounds cannot have a reso b. sulfur dioxide	nance structure? c. arsenic trifluoride	d. carbonate ion	
b	Which of the following type a. London dispersion force	s of attractions is the stron es b. dipole interactions	gest? c. hydrogen bonds	d. covalent bonds	
c	Which of the following bond a. single bond	ls is the shortest? b. double bond	c. triple bond d. all	bonds are the same length	
d	Which of the following intera a. dipole interactions	nolecular forces explains b. London dispersion for	why fluorine is a gas, but ces c. hydrogen bonds	t iodine is a solid? d. none of the above	
e	The SF_5^- ion has a square pyr a. dsp^3 b. sp	amidal structure. The hybrid c. d^2sp^3	pridization of the s orbita d. sp^3 e. sp	s in sulfur is:	
f	Which of the following elem a. carbon b. nitrog	ents does not follow the or en c. iodine	ctet rule? d. hydrogen e. flu	orine	
g	Which of the following is a a a. $C \equiv N$ b. N-H	non-polar covalent bond? c. C – O	d. H-Se e. F	Cl	
h	Which of the following is Na. dipole interaction	OT an intermolecular forc b. London dispersion for	e? ces c. hydrogen bond	d. covalent bond	
i	Which of the following can h a. diatomic oxygen	ave a triple bond? b. dihydrogen monoxide	c. carbon dioxide	d. ammonia	
j	Which of the following mole a. carbon tetrahydride	cules has polar bonds but b. ammonia	is a non-polar molecule? c. carbon tetrachloride	d. dihydrogen monoxide	
k	CCl ₄ , CO ₂ , PCl ₃ , PCl ₅ , SF ₆ a. Linear b. Octab	Which of the following do edral c. Square planar	oes not describe any of the describe any of the described of the described of the described of the described of the description	e molecules above? igonal pyramidal	
1	Molecules that have planar c I. BCl ₃	onfigurations include which II. CHCl ₃	ch of the following? III. NCl ₃		
	a. I only b. III on	ly c. I and II only	d. II and III only	e. I, II, and III	
m The electron-dot structure (Lewis structure) for which of the following molecules would have two unshared pairs of electrons on the central atom?					
	a. H ₂ S b. NH ₃	c. CH ₄	d. HCN e. CO	D_2	
n	The SbCl ₅ molecule has trig a. sp^2 b. sp^3	onal bipyramid structure. c. dsp ²	Therefore, the hybridizat d. dsp^3 e. d^2s	ion of Sb orbitals should be: sp ³	
0.	Which of the following com a. Fe(OH) ₃ b. HClC	pounds is ionic and contai c. H ₂ S	ns both sigma and pi cov d. NO_2 e. Na	alent bonds? CN	
p	Which of the following bond a. C-Si b. C-N	ls is expected to be most p c. O-C	oolar? d. S-C e. H-	С	
q	For which of the following a. CHCl ₃ b. NH ₃	may we draw both polar a c. BF ₃	nd nonpolar Lewis struct d. SF_2Cl_4 e. PC	ures? I ₅	