

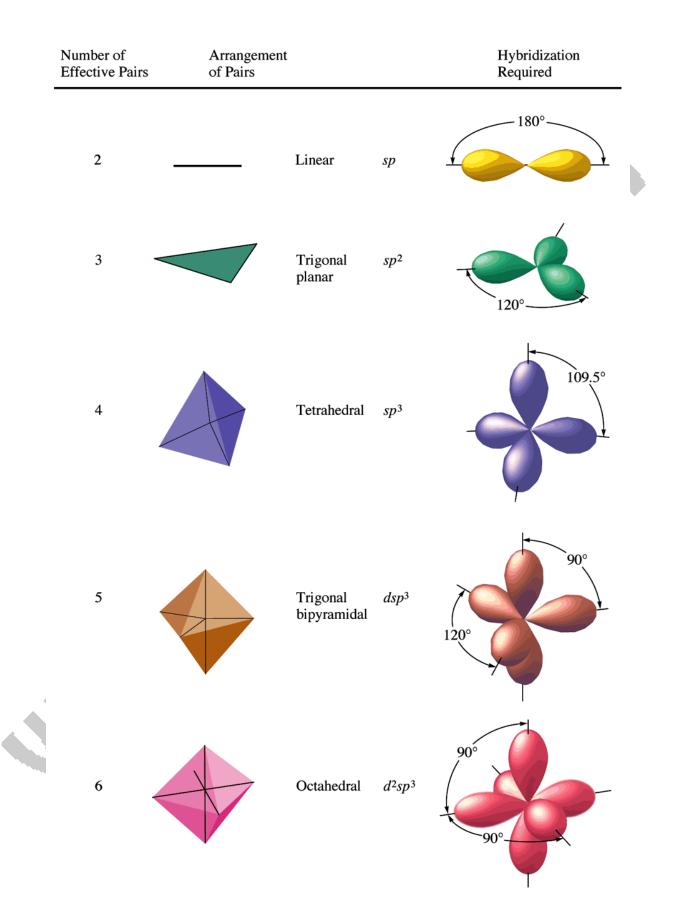
Valence Shell Electron Pair Repulsion (VSEPR)

VSEPR theory states that because electron pairs repel, molecules adjust their shapes so that the valence-electron pairs are as far apart as possible. In methane, CH₄, carbon is the central atom and the four hydrogen atoms are distributed around it. Two dimensionally it looks like:

10.

But, molecules are not two dimensional, they are three dimensional. In the three dimensional arrangement, each of the hydrogen atoms align themselves as far away from each other as possible. The three dimensional shape of carbon tetrahydride is called tetrahedral. Using the two dimensional structural formula, which we can draw on paper, and molecular hybridization, you can determine the three dimensional shape of the molecule.

Central Atoms with Two Effective Pairs (sp hybridized)						
# of lone pair	shape	Example	Bond Angle	Lewis Structure		
0	linear	BeCl ₂	180°			


Central Atoms with Three Effective Pairs (sp ² hybridized)							
# of lone pair	shape	Example	Bond Angle	Lewis Structure			
0	triangular planar	BCl ₃	120°				
1	bent (angular)	NO2 ¹⁻	104.5°				

Central Atoms with Four Effective Pairs (sp ³ hybridized)							
# of lone pair	shape	Example	Bond Angle	Lewis Structure			
0	tetrahedral	CCl ₄	109.5°				
1	triangular pyramidal	NH ₃	107°				
2	bent (angular)	H ₂ O	104.5°				

Central Atoms	with Five Effective Pa	airs (dsp ³ hybridi		
# of lone pair	shape	Example	Bond Angle	Lewis Structure
0	triangular bipyramidal	PF_5	120° 90°	
1	seesaw	SF_4	104.5°, 90°	
2	T-shaped	ClF ₃	90°	
3	linear	XeF ₂	180°	

			e V		
	with Six Effective Pai				
# of lone pair	shape	Example	Bond Angle	Lewis St	tructure
0	octahedral	SF_6	90°		
1	square pyramidal	BrF5	90°		
2	square planar	XeF4	90°		
below t though H ₂ O are central electron angles varies i molecu	the chart that even CH_4 , NH_3 and e composed of atoms with 4 n pair, the bond between atoms n the different les. bbservations	Methane H C H 109.5°	Н	Ammonia	Water

provide evidence that [H] lone pairs of electrons need more room than bonding pairs and tend to compress the angles between the bonding pairs.

Homework:	Formula	I and Stunature	II. huidinetien	Chana
Name	Formula	Lewis Structure	Hybridization	Shape
sulfur				
tetrafluoride				
bromine				
pentafluoride				
ammonia				
xenon difluoride				
methane				
carbon monoxide				
carbon monoxide				
		G		
sulfate ion				
		rue ²		
sulfur				
hexafluoride				
sulfur dioxide				
carbon dioxide				

Name	Formula	Lewis Structure	Hybriodization	Shape
dichloro, difluoromethane	CCl ₂ F ₂			
nitrate ion				
carbonate ion				
carbon tetrachloride				
xenon tetrafluoride				
arsenic trifluoride				
formaldehyde	CH ₂ O			
chlorine trifluoride				
phosphorus pentafluoride				
beryllium dichloride				