
Name _____ Chapter 2 Practice Test

Honors Chemistry

Part I: Match the name on the right with the correct statement on the left. You will use some names more than once. (1 point each)

1He used math to explain the location and energy of the electrons in an atom.	A. Aristotle
2 His theory was the basis for putting electrons into energy levels.	B. Bohr
3 His model is called the quantum mechanics model.	C. Chadwick
4 He designed his atomic model after the solar system.	D. Dalton
5 He performed the Gold Foil Experiment.	E. Einstein
6 He believed that matter is continuous.	F. Stoney
7 He is the Father of the Atomic Theory.	G. Thomson
8 He discovered the nucleus.	H. Heisenberg
9 His model put electrons into energy levels.	I. Democritus
10 He discovered the neutron.	J. Planck
11 His model of the atom is the Electron Cloud Model.	K. Schrödinger
12 He designed a mathematical equation for the model of the atom.	L. de Broglie
13He discovered that the atom is mostly empty space.	M. Millikan
14 He used a cathode ray tube to make his discovery.	N. Rutherford
15 He deduced the relationship between the energy and frequency of radiation.	
16 He discovered the wave nature of the electron.	
17 He determined the charge of the electron.	
18 He discovered the electron.	
19 He used the term "atomos" to describe an indivisible part at the base of all matt	er.
20 His model is called the Plum Pudding model.	
Part II: Choose the best answer for each question or statement. (2 points each)	

21. ______ One of the outermost electrons in a strontium atom in the ground state can be described by which
of the following sets of four quantum numbers?(A) 5, 2, 0, $\frac{1}{2}$ (B) 5, 1, 1, $\frac{1}{2}$ (C) 5, 1, 0, $\frac{1}{2}$ (D) 5, 0, 1, $\frac{1}{2}$ (E) 5, 0, 0, $\frac{1}{2}$ 22. ______Which type of radiation continues in a straight line when passed through an electric field?(A) alpha(B) gamma(C) beta(D) proton(E) positron

23 For the types of radiation given, which of the following is the correct order of increasing ability to penetrate a piece of lead?					
 (A) Alpha particles < gamma rays < beta particles (C) Beta particles < alpha particles < gamma rays (E) Gamma rays < alpha 	les < gamma rays < alpha particles				
 24 Correct statements about alpha particles include which of the following? I. They have a mass number of 4 and a charge of +2. II. They are more penetrating than beta particles. 					
III. They are helium nuclei. (A) I only (B) III only (C) I and II	(D) I and III	(E) II and III			
25 If 87.5 percent of a sample of pu(A) 6 days(B) 8 days(C) 12 days	rre ¹³¹ I decays in 2 (D) 14 days	24 days, what is the half-life of ¹³¹ I? (E) 21 days			
26 $^{235}_{92}$ U + $^{1}_{0}$ n $\rightarrow ^{141}_{55}$ Cs + 3^{1}_{0} n + X					
Neutron bombardment of uranium can induce the for following?	ollowing reaction 1	represented above. Nuclide X is which of the			
(A) ${}^{92}_{35}$ Br (B) ${}^{94}_{35}$ Br (C) ${}^{91}_{37}$ Rb	(D) $\frac{92}{37}$ Rb	(E) $\frac{94}{37}$ Rb			
 27 Experiments performed to reveal the structure of atoms led scientists to conclude that an atom's (A) positive charge is evenly distributed throughout its volume (B) negative charge is mainly concentrated in its nucleus (C) mass is evenly distributed throughout its volume (D) volume is mainly unoccupied (E) positive and negative charges are concentrated in the nucleus 					
	in the nucleus				
$\begin{array}{c} 28. \\ (A) 6 \end{array} \qquad \begin{array}{c} What is the maximum number of e \\ (B) 8 \\ (C) 10 \end{array}$	electrons that occu	upy the $n = 3$ level? (E) 32			
28 What is the maximum number of e	electrons that occu (D) 18 l, ml, ms) is NO1	(E) 32Γ permitted by the rules of quantum mechanics?			
28.What is the maximum number of (A) 6(B) 8(C) 1029.Which set of quantum numbers (n,	electrons that occu (D) 18 1, ml, ms) is NO1 (D) 4, 3, 2, + ¹ / ₂	 (E) 32 C permitted by the rules of quantum mechanics? (E) 4, 1, -1, +¹/₂ 			
28. What is the maximum number of e (A) $\overline{6}$ (B) 8 (C) 10 29. Which set of quantum numbers (n, (A) 1, 0, 0, $+\frac{1}{2}$ (B) 2, 1, -1 , $-\frac{1}{2}$ (C) 3, 3, 1, $-\frac{1}{2}$ 30. How many unpaired electrons are in	electrons that occu (D) 18 1, ml, ms) is NO1 (D) 4, 3, 2, + ¹ / ₂ in an iron atom in (D) 2	 (E) 32 F permitted by the rules of quantum mechanics? (E) 4, 1, -1, +¹/₂ its ground state? (E) 0 			
28.What is the maximum number of a (B) 829.Which set of quantum numbers (n, (A) 1, 0, 0, $+\frac{1}{2}$ 30.How many unpaired electrons are in (A) 631.An electron in an atom will emit end	electrons that occu (D) 18 1, ml, ms) is NOT (D) 4, 3, 2, + ¹ / ₂ in an iron atom in (D) 2 hergy (light) when (D) 2p to 1s	 (E) 32 C permitted by the rules of quantum mechanics? (E) 4, 1, -1, +¹/₂ its ground state? (E) 0 n it moves from energy level: (E) 3d to 4f 			
28.What is the maximum number of a (A) 6(A) 6(B) 8(C) 1029.Which set of quantum numbers (n, (B) 1, 0, 0, $+\frac{1}{2}$ (A) 1, 0, 0, $+\frac{1}{2}$ (B) 2, 1, -1 , $-\frac{1}{2}$ (C) 3, 3, 1, $-\frac{1}{2}$ 30.How many unpaired electrons are if (A) 6(A) 6(B) 5(C) 431.An electron in an atom will emit en (A) 2s to 2p(B) 1s to 2s(C) 2p to 3s32.How many orbitals in a ground state	electrons that occu (D) 18 1, ml, ms) is NOT (D) 4, 3, 2, $+\frac{1}{2}$ in an iron atom in (D) 2 nergy (light) when (D) 2p to 1s te oxygen atom ar	 (E) 32 F permitted by the rules of quantum mechanics? (E) 4, 1, -1, +¹/₂ its ground state? (E) 0 n it moves from energy level: (E) 3d to 4f re completely filled? (E) 5 			
28.What is the maximum number of a (B) 829.B) 829.Which set of quantum numbers (n, (A) 1, 0, 0, $+\frac{1}{2}$ 30.How many unpaired electrons are if (A) 631.How many unpaired electrons are if (B) 532.An electron in an atom will emit end (B) 1s to 2s32.How many orbitals in a ground stat (A) 133.How many orbitals in a ground stat (A) 1	electrons that occu (D) 18 1, ml, ms) is NOT (D) 4, 3, 2, + ¹ / ₂ in an iron atom in (D) 2 hergy (light) when (D) 2p to 1s te oxygen atom ar (D) 4 (B) Pauli exclus	 (E) 32 F permitted by the rules of quantum mechanics? (E) 4, 1, -1, +¹/₂ its ground state? (E) 0 n it moves from energy level: (E) 3d to 4f re completely filled? (E) 5 sion principle (C) Hund's rule (E) Heisenberg uncertainty principle 			
28What is the maximum number of a (A) 6(A) 6(B) 8(C) 1029Which set of quantum numbers (n, (A) 1, 0, 0, $+\frac{1}{2}$ (B) 2, 1, -1 , $-\frac{1}{2}$ 30How many unpaired electrons are if (A) 6(B) 5(C) 431An electron in an atom will emit en (A) 2s to 2p(B) 1s to 2s(C) 2p to 3s32How many orbitals in a ground state (A) 1(A) 1(B) 2(C) 3Use these answers for questions 33 - 35. (A) Wave nature of matter (D) Aufbau Principle	electrons that occu (D) 18 1, ml, ms) is NOT (D) 4, 3, 2, + ¹ / ₂ in an iron atom in (D) 2 nergy (light) when (D) 2p to 1s te oxygen atom ar (D) 4 (B) Pauli exclus	 (E) 32 F permitted by the rules of quantum mechanics? (E) 4, 1, -1, +¹/₂ its ground state? (E) 0 a it moves from energy level: (E) 3d to 4f b it moves for energy level: (E) 5 (E) 5 (C) Hund's rule (E) Heisenberg uncertainty principle a in order of increasing energy. 			

Part III: Write the best answer for each of the following statements. (2 points each)

- 36. _____ The number of unpaired electrons in chromium.
- 37. _____ The element whose electron configuration ends in $4p^3$.
- 38. _____ The maximum number of electrons that can occupy the fifth energy level.
- 39. _____ The maximum number of electrons that can occupy a single d sub-shell.
- 40. _____ The number of unpaired electrons in silicon.

Part IV: Fill in all missing information. Assume all atoms are neutral. (0.5 points each)

Isotope	#p	#n	#e-	mass #	atomic #	symbol
				79	35	
Rhodium-103						
						88 Sr 38
			28	62		
		78			58	

Part V: Average atomic mass (3 points each)

1. The element gallium is found to contain two naturally occurring isotopes. One isotope, gallium-69, has a mass of 68.9256 and the other, gallium-71, has a mass of 70.9247. Determine the percent abundance of each isotope. Your answer must have **four significant digits**. You must show all work.

2. Determine the average atomic weight of lead, given the following isotopes, their masses, and their abundances. **Your answer must have five significant digits.** You must show all of your work.

Isotope	Mass	Abundance
lead-204	203.9730	1.4
lead-206	205.9744	24.1
lead-207	206.9759	22.1
lead-208	207.9766	52.4

Part VI: Write electron configurations and orbital diagrams for each of the following. (2 points each)

In

La

V

As

Part VII: Predict the products for the following nuclear decays. (2 points each)

- $\circ \frac{^{238}}{_{92}}$ U produces an alpha particle and two beta particles
- $\circ \frac{13}{7}$ N produces a positron
- $\circ \frac{210}{82}$ Pb produces two beta particles

Part VIII: Half Life (2 points each)

1. Americium- 242 has a half life of 16.0 hours. If I have a 60.0 milligram sample now. How much remains after 80 hours?

2. Iron-59 has a half life of 44.53 days. How much a 25.0 gram sample remains after exactly one year?