Chemistry

_ / _ /___

Name

Molar Volume of a Gas Lab

Equipment & Chemicals:

Equipment		Chemicals Used
50 mL gas-measuring tube	ring stand	magnesium ribbon
one-hole stopper	utility clamp	3 M HCl
400 mL beaker	cotton thread	
10 mL graduated cylinder	2.0 L graduated cylinder (shared)	

Procedure:

 \Box 1. Obtain a piece of magnesium ribbon. Record the mass using the analytical balance.

 \Box 2. Obtain a piece of cotton thread about 8 cm long. Tie one end of the thread around the piece of magnesium ribbon, leaving a few cm of thread free. Bend the piece of magnesium so that it will easily fit into the gas-measuring tube.

 \Box 3. Add 300 mL of water at room temperature to a 400 mL beaker.

4. Obtain approximately 10. mL of 3 M HCl. Add the HCl to the gas measuring tube.

□ 5. Using a beaker, **completely** fill the gas measuring tube with room temperature water.

 \Box 6. Lower the piece of magnesium ribbon 4 or 5 cm into the gas-measuring tube. Drape the thread over the edge of the tube and insert the one-hole rubber stopper into the tube.

 \Box 7. Place your finger over the hole in the rubber stopper and invert the gas-measuring tube. Lower the stoppered end of the tube into the beaker of water. Clamp the tube in place so that the stoppered end is a few centimeters above the bottom of the beaker. Record your observations.

 \square 8. While waiting for your reaction to complete, record the room temperature and the barometric pressure in the data table.

 \Box 9. Let the apparatus stand exactly 5 minutes **after the magnesium has completely reacted**. Tap the sides of the gas collecting tube to dislodge any gas bubbles that may have become attached to the sides of the tube. Place your finger over the hole in the stopper and transfer the tube to a 2.0 L graduated cylinder filled with water and remove your finger from the hole.

 \Box 10. Move the tube up and down to equalize pressure (the pressure inside the tube with the atmospheric pressure) until the water level in the tube is the same as that in the 2.0 L graduated cylinder. On the scale of the gas-measuring tube, read the volume of the gases in the tube. Record the volume in your data table.

Post-Lab Questions: You must show all work to receive credit.

Unless stated otherwise, use data calculated in early steps to help you answer later problems.

1. Magnesium metal will be placed in an HCl solution. Write the balance chemical equation for this reaction.

2. If 0.3355 g Mg of magnesium are reacted, how many moles of H_2 would be produced?

Assuming the reaction is carried out at STP, which it won't be – zero Celsius is too cold to do experiments in a classroom, what volume of hydrogen would be theoretically produced? Use the amount of moles calculated in #2.
 More realistically, assume the reaction is carried out at 23.0°C and 29.72 in Hg (as read from the classroom barometer), what is the pressure (in atm) of the dry gas?

5. Using the pressure of the dry gas calculated in #4 and the moles calculated in #2, what volume of gas would be theoretically produced at 23.0° C and 29.72 in Hg?

6. At the above temperature and pressures, the amount of gas produced will be too much to collect in our 50. mL gas collecting tubes. Determine the maximum mass of magnesium that can be used so that no more than 40. mL of hydrogen gas is produced.

7. Using your results and info used in #5. Calculate the volume of gas produced by 1.0 mole of H_2 gas at STP.

a Table:	Vanor	Pressur	
Trial 1		Vapor Pressure of Water	
Mass of magnesium ribbon, g	Temperatur		
	(°C)	(kPa)	
Moles of Mg reacted, mol	10	1.2281	
Moles of H ₂ produced	11	1.3129	
(stoichiometrically), mol	12	1.4027	
(storemonicultury), mor	13	1.4979	
Temperature of room, °C	14	1.5988	
	15	1.7056	
Temperature of room, K	16	1.8185	
	17	1.938	
Barometric Pressure, in Hg	18	2.0644	
	19	2.1978	
Barometric Pressure, mm Hg	20	2.3388	
Datometric Pressure, mini rig	21	2.4877	
Descent this Descent 1-De	22	2.6447	
Barometric Pressure, kPa	23	2.8104	
Warran David and SW (1991) De	24	2.985	
Vapor Pressure of Water, kPa	25	3.169	
	26	3.3629	
Pressure of the dry gas, kPa	27	3.567	
	28	3.7818	
Pressure of the dry gas, atm	29	4.0078	
	30	4.2455	
Volume of H ₂ gas in the tube, mL	31	4.4953	
	32	4.7578	
Volume of H ₂ gas in the tube, L	33	5.0335	
	34	5.3229	
Calculated Experimental Volume	35	5.6267	
of 1 mol of H ₂ at STP, L	36	5.9453	
Theoretical Value = 22.4	37	6.2795	
Percent Error, %	38	6.6398	
	39	6.9969	
ervations & Conclusions:	40	7.3814	
	41	7.784	
	42	8.2054	
	43	8.6463	
	44	9.1075	
	45	9.5895	
	46	10.094	
	47	10.62	
	48	11.171	
	49	11.745	
	50	12.344	

Post-Lab Questions: Unless stated otherwise, use data calculated in early steps to help you answer later problems. 1. Magnesium metal will be placed in an HCl solution. Write the balance chemical equation for this reaction. $Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$

2. If 0.3355 g Mg of magnesium are reacted, how many moles of H_2 would be produced? 0.3355 \div 24.3 = 0.0138 mol Mg = 0.0138 mol H₂

3. Assuming the reaction is carried out at STP, which it won't be – zero Celsius is too cold to do experiments in a classroom, what volume of hydrogen would be theoretically produced? Use the amount of moles calculated in #2. **0.309 L**

4. More realistically, assume the reaction is carried out at 23.0°C and 29.72 in Hg (as read from the classroom barometer), what is the pressure (in atm) of the dry gas?
29.72 in Hg → 754.888 mm Hg → 100.643 kPa
100.643 kPa - 2.8104 kPa = 97.83 kPa
97.83 kPa → 0.966 atm

5. Using the pressure of the dry gas calculated in #4 and the moles calculated in #2, what volume of gas would be theoretically produced at 23.0°C and 29.72 in Hg?

PV= nRT V = (0.0138)(0.08206)(296) / (0.966) V = 0.347 L

6. At the above temperature and pressures, the amount of gas produced will be too much to collect in our 50. mL gas collecting tubes. Determine the maximum mass of magnesium that can be used so that no more than 40. mL of hydrogen gas is produced.

n = (.966)(0.040) / (0.08206)(296) n = 0.00159 moles 0.039 grams

7. Using your results and info used in #5. Calculate the volume of gas produced by 1.0 mole of H₂ gas at STP. $\frac{P_1V_1}{n_1T_1} = \frac{P_2V_2}{n_2T_2}$

 $\frac{(0.966)(0.347)}{(0.0138)(296)} = \frac{(1)(V)}{(1)(273)}$

V = 22.4

Teacher set-up notes:

The maximum mass of magnesium to be used in 0.0390g. Students must use analytical balance. Water used to fill the tube, beaker and battery jar must be at room temperature. Fill (12) 1.0 L beakers and the battery jar the day before the lab and let them sit at the lab stations.

The goal of the law is to determine the volume of one mole of a gas. The gas is hydrogen.

R is the same for both so it can be eliminated

 $\begin{array}{rll} \underline{P_1}\underline{V_1} &=& \underline{P_2}\underline{V_2}\\ n_1T_1 && n_2T_2 \end{array}$

P₁: pressure of dry gas V₁: volume of gas produced n₁: moles of gas used T₁: temperature of room

 $\begin{array}{l} P_2: \mbox{ standard pressure, 760 mm Hg} \\ V_2: \mbox{ calculated volume of one mole of a gas} \\ n_2: \mbox{ one mole} \\ T_2: \mbox{ standard temperature, 273 K} \end{array}$