Name

Practice Exam 1

AP Chem

/	/

e. Cs

Part 1 - 20 Multiple Choice Question – 20 minutes When potassium dichromate($K_2Cr_2O_7$) is dissolved in water, it is best represented by: **b.** $2\mathbf{K}^{+} + \mathbf{Cr}_2\mathbf{O}_7^{2-}$ d. $K_2^{2+} + \mathbf{Cr}_2\mathbf{O}_7^{2-}$ e. $2\mathbf{K}^{+} + 2\mathbf{Cr}^{4+} + 7\mathbf{O}^{2-}$ a. $K_{2^{+}} + Cr_2O_7^{2^{-1}}$ c. $2K^+ + Cr_2O_7^-$ 2. _____ Which of the following pairs of compounds can be used to illustrate the law of multiple proportions? b. HI and HIO₃ c. O_2 and O_3 a. KMnO₄ and KOH d. SO₃ and SO₂ e. both C & D 3. _____ Which of the following elements forms a polyatomic anion where it has an oxidation number of +5?b. S d. N a. Ca c. Fe _____ How many electrons does a sulfide ion have? a. 18 b. 20 c. 14 d. 16 e. 32 5. _____ When the following half reaction is balanced with the smallest whole number coefficients, it will contain: $CN^- \rightarrow CNO^$ a. 2e⁻ on the right side b. 1e⁻ on the right side c. H_2O on the right side d. $2H^+$ on the left side e. a coefficient of 2 for CNO-6. _____ The compound that contains 28.6% oxygen is: b. CaO a. NaOH c. Al_2O_3 d. BaO e. Ca(OH)₂ 7. _____ Which of the following cannot be a reducing agent? b. S²⁻ a. Au e. O²⁻ c. Mn⁷⁺ d. Cu⁺ 8. _____ How many grams of Ca(OH)₂ (molar mass = 74.0 g/mol) are contained in 5.00 x 10^2 mL of a 0.80 M calcium hydroxide solution? a. 40 g c. 30. g d. 18 g. b. 60. g e. none of these

9. _____ CH₃OH(g) + __O₂(g) \rightarrow __CO₂(g) + __H₂O(g) The reaction above represents the oxidation of methanol. How many moles of O₂ are needed to oxidize 1 mole of CH₃OH?

a. 3/2 moles b. 5/2 moles c. 2 moles d. 1/2 moles e. 1 mole

10. A 450. mL sample of a 0.375 M solution is left on a hot plate overnight; the following morning the solution is 1.50 M. What volume of solvent has evaporated from the 0.375 M solution?

a. 338 mL b. 56.3 mL c. 112 mL d. 230. mL e. 288 mL

11. _____ What is the mass ratio of iron to oxygen in iron(II) oxide? a. 3.5 to 1 b. 2.3 to 1 c. 1 to 3.5 d. 1 to 2.3 e. 1 to 1.75

When 100 grams of butane gas (C_4H_{10} , MW = 58.14) is burned in excess oxygen gas, the 12. ____ theoretical yield of H₂O (in grams) is: 1) / ---(4) (10 07) (5)(5) 14)(10,00) (100)(5)(10,00)

a.	(58.14)(18.02)	h $(58.14)(5)$	c. $\frac{(4)(18.02)}{(58.14)(5)}$	d. $\frac{(5)(58.14)(18.02)}{(100)}$	e.	(100)(5)(18.02)
	(100)(5)	(100)(18.02)				(58.14)

13. _____ Excess $S_8(s)$ is heated with a metallic element until the metal reacts completely. All excess sulfur is combusted to a gaseous compound and escapes from the crucible. Given the information that follows, determine the most probable formula for the residue.

Mass of crucible, lid and metal = 55.00 grams Mass of crucible and lid = 41.00 grams Mass of crucible , lid and residue = 62.00 grams a. CuS b. Cu_2S c. FeS d. Fe_2S_3 e. not enough information 14. _____ What ions would you find in solution if potassium perchlorate was dissolved in water? a. KCl, O_2 b. K^+ , ClO^- , O^{2-} c. KCl, O^{2-} d. K^+ , ClO_4^- e. K^+ , Cl^- , O^{2-} 15. _____ Arrange the following species in order of increasing oxidation number of the sulfur atom SCl_2 S_8 SO_2 H_2S S_2Cl_2 SO_3 a. H₂S, S₈, S₂Cl₂, SCl₂, SO₂, SO₃ b. SO₃, SO₂, SCl₂, S₂Cl₂, S₈, H₂S c. H₂S, S₈, SCl₂, S₂Cl₂, SO₃, SO₂ d. SO₂, SO₃, S₂Cl₂, H₂S, SCl₂, S₈ e. S₈, H₂S, SO₃, SCl₂, SO₂, S₂Cl₂ 16. _____ How much 2.0 M H₂SO₄ would be required to make 500 mL of 0.50 M H₂SO₄? a. 100 mL c. 250 mL d. 500 mL b. 125 mL e. 400 mL 17. ___ Balance the following equation using the lowest possible whole-number coefficients. $NH_3 + CuO \rightarrow Cu + N_2 + H_2O$ The sum of the coefficients is: a. 9 b. 10 d. 12 e. 13 c. 11 If a 10. cm³ sample of unknown contains 1 cm³ of 0.1 M AlCl₃, then the concentration of Al³⁺ in 18. ____ the unknown is about: a. 0.001 M b. 0.01 M c. 0.1 M d. 1 M e. 10 M Which one of the following is correct?a. KClO3, potassium perchlorateb. CuO copper oxide 19. ____ c. $Al_3(SO_3)_2$ aluminum sulfate d. MgPO₄ magnesium phosphate E. Na₂Cr₂O₇ sodium dichromate _____ A student was given 31.5 mg of $Ba(OH)_2 * 8H_2O$ (MW = 315 g/mol). She wanted to make a 20. solution where the [OH⁻] is 0.10 M. How much water should she add to make the solution?

a. 1.0 mL b. 2.0 mL c. 4.0 mL d. 8.0 mL e. 99 mL

Practice Exam 1 Part 2 - 2 Free Response Question – 20 minutes

Answer the following questions that relate to the analysis of chemical compounds.

(a) A compound containing the elements C, H, N and O is analyzed. When a 2.1106 g sample is burned in excess oxygen, 3.2017 g of CO₂(g) is formed. The combustion analysis also showed that the sample contained 0.1710 g of hydrogen.

(i) Determine the mass, in grams, of C in the 2.1106 g sample of the compound. 0.8737 g

(ii) When the compound is analyzed for N content only, the mass percent of N is found to be 32.16%.

Determine the mass, in grams of N in the original 2.1106 g sample of the compound. **0.6788 g**

(iii) Determine the mass, in grams, of oxygen in the original 2.1106 g sample of the compound. **0.3871** g

(iv) Determine the empirical formula of the compound. $C_3N_2H_7O$

(v) The molecular mass of the compound is 174.2 g/mol. Determine the molecular formula of the compound. $C_6N_4H_{14}O_2$

- #2. The reaction between solid copper metal and silver nitrate can be represented by the following reaction: $Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$
- (a) A 1.87 g sample of copper wire was placed in 225 mL of 0.250 M AgNO₃ at 25°C.

(i) Identify the limiting reactant. Ag

(ii) What is the maximum mass of solid silver that can be produced? 6.07 g Ag

(iii) Determine the value of $[Cu^{2+}]$ after the reaction is complete. Assume the volume change is negligible. 0.125 M

(iv) When all of the limiting reactant has been consumed, how many moles of the other reactant remain? **0.00133 moles**

(b) Answer the following questions about the reaction above.

- (i) Which substance acts as the oxidizing agent? Ag^+
- (ii) How many electrons are transferred in the reaction? $2e^{-1}$