Name_		2 h X	AP Chemistry		<u></u>				
Chapter 7 HW 6: Due 1/22/16 Complete the following multiple choice questions. All will be graded. Write your answer clearly on the line in front of the question.									
1. Equal numbers of moles of He(g), Ar(g), and Ne(g) are placed in a glass vessel at room temperature. If the vessel has a pinhole-sized leak, which of the following will be true regarding the relative values of the partial pressures of the gases remaining in the vessel after some of the gas mixture has effused?									
	$(A) P_{He} < P_{Ne} < 1$	P_{Ar} (D) $P_{Ar} < P_{He} < P_{He}$	(B) $P_{He} < P_{Ar} < 1$	(E) $P_{He} = P_{Ar} = 1$	$(C) P_{Ne} < P_{Ar} < P_{He}$	8			
2 acid?	A	Which of the follo	wing compounds	is NOT apprecial	ly soluble in water b	out is soluble in di	ilute hydrochloric		
##X	(A) $Mg(OH)_2(s)$	(D) (NH ₄) ₂ SO ₄ (s	(B) (NH ₄) ₂ CO ₃ (s) (E) Sr(NO ₃) ₂ (s)	(C) CuSO ₄ (s)				
3	(A) $8 \times 10^{-12} \mathrm{M}$	What is the molar (D) $(4 \times 10^{-12} \text{ M})$	solubility in wate (B) 2×10^{-12} M $^{1/3}$	er of Ag_2CrO_4 ? (The contraction of Ag_2CrO_4 ?) (E) (2 x 10^{-12} M	ne K_{sp} for Ag_2CrO_4 is (C) $(4 \times 10^{-12} \text{ M})^{1/3}$	s 8 x 10 ⁻¹² ,)	Ś		
4				arium ions, [Ba ²⁺]	, in solution when 10	00. mL of 0.10 M	BaCl ₂ (aq) is		
mixed v	with 100. mL of 0. (A) 0.00 M	050 M H ₂ SO ₄ (aq) (B) 0.012 M		(D) 0.075 M	(E) 0.10 M	1 Becl2+	ILSON BOSON		
5. When 100 mL of 1.0 M Na ₃ PO ₄ is mixed with 100 mL of 1.0 M AgNO ₃ , a yellow precipitate forms and [Ag ⁺] becomes negligibly small. Which of the following is a correct listing of the ions remaining in solution in order of increasing concentration?									
	(A) $[PO_4^{3-}] < [N$	$NO_3^-] < [Na^+]$ $n^+] < [NO_3^-] < [PO_3^-]$	(B) [PO	$ O_4^{3-} < [Na^+] < [NC]$ (E) [Na	$[PO_4^3]$ (C) $[NO_3]$] < [PO ₄ ³⁻] < [N	a ⁺]		
6	o will allow the s	In a qualitative an separation of Pb ²⁺	alysis for the pres	ence of Pb ²⁺ , Fe ²⁺	, and Cu ²⁺ ions in a a	aqueous solution,	which of the		
10110 1111	(A) Adding dilut	te Na ₂ S(aq) solution	on (B) Ad	ding dilute HCl(ac	l) solution				
		te NaOH(aq) solut te HNO3(aq) soluti		ding dilute NH ₃ (a	q) solution				
7	a value of 38 per	After completing	an experiment to	determine gravime	etrically the percentage the hydrate is 51 per	ge of water in a h	ydrate, a student		
most lik	tely explanation for	or this difference?			, 1869 V TI		to rome while is the		
		I heating caused so ted sample absorb			out of the crucible.				
		of the hydrate san							
	9 9	was not heated to							
	(E) Excess heath	ng caused the dehy	dialed sample to	decompose.					
8. 0.500 N		The volume of dis	tilled water that s	hould be added to	10.0 mL of 6.00 M	HCl(aq) in order t	to prepare a		
0.5001	(A) 50.0 mL	(B) 60.0 mL	(C) 100. mL	(D) 110. mL	(E) 120. mL				
9	A	Which of the follo	wing gases devia	tes most from idea	l behavior?				
	(A) SO ₂	(B) Ne	(C) CH ₄	(D) N_2	(E) H ₂				
10 Commercial vinegar was titrated with NaOH solution to determine the content of acetic acid, HC ₂ H ₃ O ₂ . For 20.0 milliliters of the vinegar 26.7 milliliters of 0.600-molar NaOH solution was required. What was the concentration of acetic acid in the vinegar if no other acid was present?									
ar are v	(A) 1.60 M	(B) 0.800 M	(C) 0.600 M	(D) 0.450 M	(E) 0.200 M		**		
11	3				+ 3 ClO ₄ - + 4 OH		French		
Which:	species acts as an (A) H ₂ O	oxidizing agent in (B) ClO ₄	the reaction repre (C) ClO ₂	esented above? (D) MnO ₂	(E) MnO ₄		×		

	12	(A) CrO ₃	In which of the f (B) CrO ₂	ollowing compou (C) CrO	nds is the mass rat (D) Cr ₂ O	(E) C _{**} O		et to 1.62 to 1.00 ?		
		1		A TT CO.	OII >	A - (-) 1 TT A -	O () 1	10 - CH		
	13	ha aquation above	Ag is balanced with l			Ag(s) + H ₃ As	O₃(aq) + H ⊃H_ie	20 MASO3 AU		
	when u	(A) 2	(B) 4	(C) 5	(D) 6	(E) 7	0 4 3ASH3"	That would be the		
	14	e of this sample at	A sample of 0.01 27 °C and the sam	10 mole of oxyger	gas is confined a	t 127 °C and 0.80	atmosphere. W	hat would be the		
	prossur	(A) 0.10 atm	(B) 0.20 atm	(C) 0.60 atm	(D) 0.80 atm	(E) 1.1 atm				
	4.4	5					1,8)			
	15	(1/2) (1/2) > 1			$\Delta H^{\circ} = -286 \text{ kJ}$. 296	1 2	30-		
		$(1/2) O_2(g) \longrightarrow F$				+ 586	NO			
		$+ (1/2) O_2(g)>$			$\Delta H^{\circ} = -414 \text{ kJ}$	441.	16%.			
			2) H ₂ (g)> NaOI		$\Delta H^{\circ} = -425 \text{ kJ}$	-850	A STATE OF THE PARTY OF THE PAR	.5		
		ased on the information above, what is the standard enthalpy change for the following reaction? $a_2O(s) + H_2O(1) \rightarrow 2 \text{ NaOH}(s)$								
	Na ₂ O(S	(A) -1,125 kJ	(B) -978 kJ	(C) -722 kJ	(D) -150 kJ	(E) +275 kJ				
	16				ntum numbers (n	, l, m _l , m _s) best des	scribes the vale	nce electron of highest		
	energy	(A) 4, 0, 0, $\frac{1}{2}$	gallium atom (ator (B) 4, 0, 1, ½		(D) 4, 1, 2, $\frac{1}{2}$	(E) 4, 2, 0, ½				
1-1		(11) 1, 0, 0, 72	(2) 1, 0, 1, 12	(-) ., -, -, /-	(=) ', -, -, -	(-) -, -, -, -, -		4		
	17							acid. A brown gas		
			um disappears, and			w but becomes co.	lorless when w	armed. These		
	observa	itions best support (A) Nitric acid is	t which of the follo	owing statements?		0				
			s a strong acid. candium nitrate is	vellow and scand	ium chloride is co	olor less				
			eacts with metals t			Alor Tess.				
		(D) Scandium re	eacts with nitric ac	id to form a brow	n gās.					
		(E) Scandium ar	nd nitric acid react	in mole proportion	ons of I to 3.					
	10	1								
	18	f an empty contair		por la company de la company d				May .		
***			is the solid sample	= 25 0 grams						
			ole = 11.0 cubic ce			4 147				
		a above were gath	nered in order to de	etermine the densi	ty of an unknown	solid. The density	of the sample	should be reported as		
		(A) 0.5 g/cm^3	(D) 2.00 g/cm ³	(B) 0.50 g/cm^3	(C) 2.0	g/cm ³				
	0	$\mathbf{\Omega}$	(D) 2.00 g/cm ³	DGI ()	(E) 2.27 g/cm^3					
	19.	Ol and Ol and m		$\langle = > PCl_5(g) +$		anilibrium accord	ing to the equa	tion above. Which of		
							ing to the equa	tion above. Which of		
	the following causes an increase in the number of moles of PCl ₅ present at equilibrium? I. Decreasing the volume of the container M. Raising the temperature M. Adding a mole of He gas at constant volume.									
		(A) I only	e volume of the co	(B) II only		nd III only				
		4	(D) II and III on	8 18 5	(E) I, II, and III					
		~			- X	8	2 2 1212 V			
	20	Educa Carrier						partial pressure of the		
								olid compound, the of the compound?		
	pressur	(A) XeF	(B) XeF ₃	(C) XeF ₄	(D) XeF ₆	(E) XeF ₈	is the formula	of the compound:		
			8 S.E. S.	3 (3)	5	9 37		A.		
	21	<i>D</i>	_ What is the H^+ (B) 2.5 x 10^{-10}	(aq) concentration	in 0.05 M HCN ((aq)? (The Ka for	HCN is 5.0 x 1	0^{-10})		
	R.	(A) 2.5×10^{-11}	(B) 2.5×10^{-10}	(C) 5.0×10^{-10}	(D) 5.0×10^{-6}	(E) 5.0×10^{-4}				
	00	C								
	22.	here A nossible f	_ A hydrocarbon gormula for the hyd		cai iormuia CH ₂ l	ias a density of 1.8	so grams per li	ter at 0 °C and 1.00		
	aunosp.	(A) CH ₂	(B) C ₂ H ₄		(D) C ₄ H ₈	(E) C_5H_{10}				