Name			AP Cl	nem		//
Chapter 5 Ho Circle and write		rect answer on the line	for each of	the following.		
the following is t	rue? of the gas doubles of the gas halves	n a closed container ha	(B) The (D) The	e density of the gas e size of the molec	s doubles	eld constant. Which of
(A) The density of(B) The inside of(C) Helium mole(D) The pressure	A helium filled b of the helium filled the balloon is war cules have greater beneath the balloo	alloon rises. Which of balloon is less than the mer than the outside ai kinetic energy than the on is greater than the pr h to effuse rapidly, caus	the followin e surroundin r. e outside air. essure above	g choices is the bo g air. e the balloon.	est explanation for t	he phenomenon?
	0.10 moles of C ₃ H ve. The flask's ten	perature is 500. K; cal	k. The flask culate the approximately constrained and the second seco			s completely according to
the other holds 8(A) The volume(B) The number(C) The density of(D) The average(E) The average	.0 grams of oxygen of the hydrogen co of molecules in the of the hydrogen san kinetic energy of t speed of the hydro	h. Which of the following the number of the following the same as the hydrogen container is not set to hydrogen container is the hydrogen molecules gen molecules is the same set to he hydrogen molecules is the same set to her hydrogen molecules is the same set to her hydrogen molecules is hydrogen molecules.	ng statement he volume o the same as f the oxygen is the same me as the av	ts regarding these f the oxygen conta the number of mo sample. as the average kin erage speed of the	gas samples is FAL ainer. Alecules in the oxygen netic energy of the o e oxygen molecules.	en container. xygen molecules.
5(A) ½	As the temperatu (B) (313	re is raised from 20° C (C) $(293)^{1/2}$ (C) $(293)^{1/2}$	to 40°C, the 313/293	average kinetic en (D) 2	nergy of neon atoms	changes by a factor of (E) 4
pressure? (A) The total kin	netic energy of the	owing is the same for o molecules econd of molecules wit (E) The root-mean-sq	h the wall	(B) The density(D) The average	-	-
	h of the following	le of NH ₃ (molar mass gases effuses at approx (B) He (mola ass 71 grams)	imately one- r mass 4.0 g	half that rate?	(C) CO_2 (molar m	
oxygen is added (A) The volume	at constant temper of the gas increase		ime.	(B) The pressure(D) The total numbers	e of the gas decrease mber of gas molecu	
9 A sample of an ideal gas is cooled from 50.0 °C to 25.0 °C in a sealed container of constant volume. Which of the following values for the gas will decrease? I. The average molecular mass of the gas II. The average distance between the molecules III. The average speed of the molecules						
(A) I only	(B) II only	(C) III only		(D) I and III	(E) II and III	

has a pinhole-sized le	ual numbers of moles of He(g ak, which of the following wi el after some of the gas mixtur	Il be true regarding the	e relative values of the partial	
(A) $P_{He} < P_{Ne} < P_{Ar}$	(B) P_{He} (D) $P_{Ar} < P_{He} < P_{Ne}$	$T_e < P_{Ar} < P_{Ne}$ (1)	(C) $P_{Ne} < P_A$ E) $P_{He} = P_{Ar} = P_{Ne}$	$_{\rm r}$ < P _{He}
(A) The average kine	gon gas initially at 25°C is he tic energy of the argon atoms he gas decreases by about 50 p (E) The pressure of the	ated to 50°C in a close does not change. (A percent. (A	ed container. Which statemer B) The average kinetic energ D) The pressure of the gas do	nt is correct? y of the argon atoms doubles.
Which of the followin(A) Both gases would(B) The average kine(C) The average kine(D) There are equal more than the second seco		s is greater than that o s is greater than that o O_2 molecules.	f the He molecules.	ume. Both gases are at 100°C.
13 W (A) Gas particles are (C) Gas particles don	hich one of the following is N negligibly small.	OT an assumption of () ()	B) Gas particles are in constaD) Gas particles undergo elas	stic collisions.
14 W (in grams per liter)? (A) 2 g/L	-	xpress the approximat (C) 6 g/L	e density of carbon dioxide g (D) 8 g/L	(E) none of the above
conditions, which of t (A) O_2 (molar mass 2	25°C, a sample of NH ₃ (mola he following gases effuses at 32 grams) (B) H (D) Cl ₂ (molar mass 71	approximately double e (molar mass 4.0 gra grams) (1	that rate? ms) (C) CO_2 (m E) CH_4 (molar mass 16 gram	olar mass 44 grams) s)
16 A this sample at 15°C at (A) 0.0876 atm			(D) 0.233 atm	What would be the pressure of (E) 0.533 atm
17 A What is the molar may (A) 0.0218 gram/mole	sample of 3.30 grams of an id ss of the gas? The gas constant (D) 45.8 grams/mole	eal gas at 150.0 °C an it, R, is 0.0821 L atm (B) 16.2 grams/mo	$mol^{-1} K^{-1}$).	has a volume of 2.00 liters. 37.0 grams/mole
of this sample at 15° (C and the same volume?	0 0		e. What would be the pressure
(A) 0.0876 atm	(B) 0.175 atm	(C) 0.201 atm	(D) 0.233 atm	(E) 0.533 atm
19.AWhat is the molar mas(A) 0.0218 gram/mole	6	(C) 37.0 grams/mo		has a volume of 2.00 liters. (E) 71.6 grams/mole
		pressure of 0.80 atm.	What is the volume if the pro-	essure is changed to 0.20 atm at
constant temperature? (A) 1.0 L	(B) 2.0 L	(C) 8.0 L	(D) 16 L	(E) 6 L
				at 400. K. If the vessel has a survey of the gases remaining in
	of the gas mixture has effused			

(A) $P_{CO2} < P_{SO2} < P_{H2O}$ (B) $P_{CO2} < P_{H2O} < P_{CO2} < P_{SO2}$ (C) $P_{SO2} < P_{CO2} < P_{H2O}$ (E) $P_{CO2} = P_{SO2} = P_{H2O}$

22(A) chlorine	A 0.239 g sample of a gas in a 1 (B) nitrogen	00-mL flask exerts a press (C) krypton	ure of 1520 mmHg at 14 °C (D) xenon	2. What is the gas? (E) oxygen			
23 A sample of neon gas has a volume of 333 mL at 30.°C and a certain pressure. What volume would it occupy if it were heated to 60.°C at the same pressure?							
(A) 366 mL	(B) 399 mL	(C) 333 mL	(D) 666 mL	(E) 167 mL			
24 Hydrogen gas is collected over water at 21°C. At 21°C the vapor pressure of water is 18.7 torr. If the barometric pressure is 758 torr what is the pressure of hydrogen gas?							
(A) 758 torr	(B) 777 torr	(C) 739 torr	(D) 48.2 torr	(E) 18.7 torr			
25 (A) 45.2 m/s	Calculate the root mean square (B) 142 m/s	velocity of a sample of 10.0 (C) 1010 m/s		55.0 °C. (E) 1430 m/s			
	_ When a sample of oxygen gas in of the following is also doubled?	a closed container of cons	stant volume is heated until	its Celsius temperature is			
(A) The density of			s (C) The pressur one of the above	e of the gas			
27 temperature? Me	_ Helium is often found with metl thane diffuses:	nane, CH4. How do the diff	fusion rates of helium and m	hethane compare at the same			
(A) $\frac{1}{2}$ as fast as h	(B) for (D) at the same rate as helium.	ur times as fast as helium. (E) ¼ as fast as	(C) twice as fas	t as helium.			
28 (A) high P and lo	Under which conditions will a g ow T (B) lov (D) high P and high T	w P and low T	(C) low P and h behave ideally at all condition				
 29 Xenon gas initially at 35°C is heated to 105°C in a closed container. Which statement is correct? (A) The average kinetic energy of the xenon atoms does not change. (B) The average kinetic energy of the xenon atoms triples. (C) The pressure of the gas increases by 23 percent. (D) The pressure of the gas triples. (E) The pressure of the gas increases by about 8 percent. 							
30 (A) Ar	Which gas has a density of 2.58 (B) Ne		? (D) CH ₄	(E) Kr			
	_ A gas mixture at 27°C and 760			-			
speeds compare? (A) He = $O_2 = N_2 = CO$ (B) $O_2 < N_2 = CO < He$ (C) He < CO = $N_2 < O_2$ (D) CO < $O_2 < N_2 < He$ (E) He < $O_2 < CO < N_2$							
32	_ Which of the following would e	xpress the approximate der	nsity of sulfur dioxide gas a	t 0°C and 3.00 atm pressure			
(in grams per lite (A) 2.2 g/L	(B) 4.3 g/L	(C) 6.5 g/L	(D) 8.6 g/L	(E) 5.5 g/L			
33. $2\text{Li}(s) + 2\text{HCl}(aq) \rightarrow H_2(g) + 2\text{LiCl}(aq)$ Calculate the volume of Hydrogen produced if 3.55 grams of Li react with excess HCl if the pressure is 0.98 atm and the temperature							
is 29.0 °C. (A) 6.50 L	(B) 13.0 L	(C) 3.25 L	(D) 44.9 L	(E) 89.8 L			
 34 Three balloons are each filled to a volume of 40.0 L with Ar, Kr, and Xe, respectively. Which statement is true under the same conditions of temperature and pressure? (A) The balloons contain the same mass of gas. (B) All gases have the same kinetic energy. (C) The densities of the three gases are the same. (E) All gases have the same root mean square velocity. 							
35 in the flask is 800 (A) 800 mm Hg	A flask contains 0.25 mole of S 0 mm Hg. What is the partial press (B) 600 mm Hg			he total pressure of the gases (E) 160 mm Hg			

Questions 36–38 (A) Ne	refer to the following gases at 0°C (B) Xe	C and 1 atm. (C) O ₂	(D) CO	(E) NO		
36	Has an average atomic or molect	ular speed closest to that o	f N_2 molecules at	0°C and 1 atm.		
37	Has the greatest density.					
38	Has the greatest rate of effusion	through a pinhole.				
39(A) SO ₂	A 2 L container will hold about (B) N ₂		ing gases at 0°C ar (D) C_4H_8	nd 1 atm? (E) NH ₃		
40 (A) Ar	. Which of the following gasses sl (B) Cl ₂	nows most ideal behavior (C) He	at 25°C and 1 atm (D) CH ₄	? (E) O ₂		
41 (A) 1,200 K	At approximately what temperat (B) 600 K	ure will 40. Grams of argo (C) 550 K	on gas at 2.0 atm o (D) 270 K	ccupy avolume of 22 (E) 140 K	2.4 L?	
42 When 25.6 g of S	$s_8(s)$ reacts completely with an executive set $s_8(s)$ reacts completely with an executive set $s_8(s)$ reacts set $s_8(s)$	$+ S_8(s) \rightarrow 8H_2S(g)$ cess of $H_2(g)$ according to	o the equation abo	ve, the volume of H	$_2$ S(g), measured at	
0°C and 1.00 atm, (A) 30 L	, produced is closest to: (B) 20 L	(C) 10 L	(D) 5 L	(E) 2 L		
43.	At which of the following temp	eratures and pressures wo	uld a	emperature (K)	Pressure (atm)	
	kely to deviate from ideal behavio		(A)	100	50	
			(B)	200	5	
			(C)	300	0.01	
			(D) (E)	500 500	0.01	
 44Of the following gases, which has the greatest average molecular speed at 298 K? (A) Cl₂(g) (B) NO(g) (C) H₂S(g) (D) HCN(g) (E) PH₃(g) 45A sample of neon gas has a volume of 248 mL at 30.°C and a certain pressure. What volume would it occupy if it were heated to 60.°C at the same pressure? (A) 226 mL (B) 273 mL (C) 278 mL (D) 496 mL (E) 124 mL 46A gas is collected in the flask shown here. What is the pressure exerted by the gas if the atmospheric pressure is 735 mmHg? 						
(A) 42 mmHg (B) 693 mmHg (C) 735 mmHg (D) 777 mmHg (E) 84 mmHg 47 A sample of oxygen gas and a sample of an unknown gas are weighed separately in the same evacuated flask. Use						
Mass of evacuated Mass of flask + ox Mass of flask + un	kygen 125.10 g nknown gas 125.34 g			i me same pressure a	na temperature).	
(A) 22 g/mol			6 g/mol	CO How do their	avaraga malagular	
48 speeds compare? (A) He = $H_2 = N_2$	A gas mixture at 27°C and 760 r = CO_2 (B) $CO_2 < H_2 =$ (D) $CO_2 < N_2 < He < H_2$	nm Hg contains 1.0 g each N ₂ < He (C) H (E) H ₂ < He <	$e < H_2 < N_2 < CO_2$		average molecular	
49 (A) He and Ne	Which pair of gases has the same (B) N_2 and O_2	e average rate of diffusion (C) N ₂ O and CO ₂	at 25°C? (D) NH ₃ and H	(E) SF_6	and Xe	
50 (A) Ne	Which noble gas effuses approxi (B) Ar	imately twice as fast as Kr (C) Xe	? (D) Rn	(E) He		