| Name | AP Chemistry | | | | | | | |--|---|---|--|-----------------|-----------------------------|--------------|-------| | HW 1: Due 3/13/15. Complete all free a
Box and clearly label all final free respo | | estions. Al | l questior | s will be | e graded | Show all | work. | | 1. $2 \text{ H}_2\text{O}_2(aq) \rightarrow 2 \text{ H}_2\text{O}(l) + \text{O}_2(g)$ The decomposition of hydrogen peroxide to for represented by the equation above. A proposed involves the free radicals HO* and HOO*, is rebelow. H ₂ O ₂ \rightleftharpoons 2 HO* (slow) | mechanism for the reaction, which presented by the three equations | 1.50 (W) | | | | | | | $H_2O_2 + HO^* \rightleftharpoons H_2O + HOO^*$ (fast)
$HOO^* + HO^* \rightleftharpoons H_2O + O_2$ (fast)
(a) Write the rate law consistent with the propo
(b) The rate of the decomposition reaction was
resulting data were plotted in the graph to the ration, in hours, needed for the concentration of | sed mechanism above. studied in an experiment, and the ight. Using the graph, determine the | H ₂ O ₂ Concentration (M) | | | | | | | (i) 1.50 M to 0.75 M (ii) 0.80 M to 0.40 M (c) The experimental data are consistent with the constant of the decomposition decom | | 0.00
0.00
0.00 | | | 1.00 less ime (hours) | 1.50 | 2.00 | | Half-Reaction $H_2O_2 + 2 e^- \rightarrow 2 \text{ OH}^-$ $O_2 + 2 H_2O + 2 e^- \rightarrow H_2O_2 + 2 \text{ OH}^-$ (d) Calculate the value of the standard cell pote | Standard Reduction Potential. E° 0.88 V -0.15 V | | of Tables
(17 Tables)
(17 Tables)
(18 Tab | | ie selo iii | | | | K_{eq} | | creases the rulue for the c | ate of the o | decompose E_a | ition react
in for the t | mcatalyzed r | | | bi at - 0.7 = 0 | 50 hr
= ~0,80 hr | | | | | | | | c. it is consisted
regardless of t | t because the 11 the concentrations. | 5 /if | e re | mai | nc 4 | the so | | | d. H202+2e-3
H202+20H-A | 20H + 0.88V | | · | | | | | | C. AG is loss tha | n Zero ble Eis | , n-\$- s | | | • | | | | Fi. Only Ea. Star
only the path
Fii. Ea would be | te truetions are no | 2 x | fect | ed V | y co | Adys! | | | fil. Ea would be | less. Patalysts v | Sivors | Q Q 5 | Nor | ter 6 | athw | *\\ |