Name	AP Chemistry	
Chapter 16 HW 2: Due 3/4/16. Complete all free label all final free response answers. #YOTAPCO		graded. Show all work. Box and clearly
 Nitrogen monoxide, NO(g), and carbon monoxide under suitable conditions these two gases could react (a) Write a balanced equation for the reaction describing the reaction. Justify your answer. Write the expression for the equilibrium constant (c) Consider the following thermodynamic data. 	It to form $N_2(g)$ and $CO_2(g)$, which a bed above. Indicate whether the carb t, K_p , for the reaction.	re components of unpolluted air. con in CO is oxidized or whether it is reduced
NO	CO	CO ₂
at 298 K. Include units with your answer	K is -746 kJ per mole of $N_2(g)$ form	ed, calculate the value of ΔS° for the reaction
(d) For the reaction at 298 K, the value of K_p is 3.3 x x 10^{-7} atm, $P_{CO} = 5.0 \times 10^{-5}$ atm, $P_{N2} = 0.781$ atm, and	$\times 10^{120}$. In an urban area, typical presend $P_{\rm CO2} = 3.1 \times 10^{-4}$ atm.	ssures of the gases in the reaction are $P_{NO} = 5.0$
(i) Calculate the value of ΔG for the reactio (ii) In which direction (to the right or to the	on at 298 K when the gases are at the	partial pressures given above.
Explain.	①	
a. 2NO +2CO -> 2CO)2 + N2 (0)	s oxidized because it
D (p(02) (pN2)	losese	0 0
(bro) (bro)	TO Y	
Cà DG = [2(-394.36) +0]	-[7(86.55)+2(-137.151-
DG= -788.72- [-	101.23 (1	AG=NH-TDS
@ TAG = -687.5 KJ	-683	248PS - 0002PF = 002F
(3.1×10×4)2 (0.75	(18	DS = -0.196 KJ/K)@
di Q = (5.0x107)(5.0)	×10-5)2 (= 1.	20 × 10 14
MG= BG + RT ONC	2	
-687500 DG = -6875	00 1(8.3145) 299	8 In 1.20 x 10")

DG = -687500 + 80324

(2) [AG = -607KJ)

Dis Expendence in the forward (Right) direction.

The data in the table to the right were determined at 25°C.

- (a) Calculate ΔG° for the reaction above at 25°C.
- (b) Calculate K_{eq} for the reaction above at 25°C.
- (c) Calculate ΔS° for the reaction above at 25°C.

(c) Calculate 25 for the reaction above at 25 C.
(d) In the table above, there is no data for H_2 . What are the values of ΔH_f° , ΔG_f° , and of the absolute
entropy Co for H at 25°C2

entropy, S°, for H_2 at 25°C?
a. DG=[-166.2]-[-137.3]=[-18.9K]
b. DG = -RT ONK
-28900 = (-8.3145)(298) lnk
Dnk=11.66
[K > 1.16 × 105]
DG = AH = FDG
C, -28.9 = -128.1 - 29885
99.2 29845
DS=-0.333KJ/K or -333J/K
d. OH, (H) = Ø
NGCHO = Ø

Substance ΔH_f° (kJ mol⁻¹)

CO(g)

CH₃OH(l)

-110.5

-238.6

 ΔG_f° (kJ mol⁻¹)

-137.3

-166.2

S° (J mol⁻¹ K⁻¹)

+197.9

+126.8

DS = 80 - 25 m	
-333 = [126.8] - [197.9 + Zx]	
- Hra 8 197 a - 7 -	