Name	AP Chemistry
HW 1: Due 2/25/15 Complete both free respons label all final answers	se questions. One or both will be graded. Show all work. Box and clearly
35°C. The amount of liquid ethanol initially decreases, has a boiling point of 78.5°C and an equilibrium vapor I (a) When the amount of liquid ethanol in the flask is con answer.	numped out. Then some liquid ethanol is injected into the sealed flask, which is held at but after five minutes the amount of liquid ethanol in the flask remains constant. Ethanol pressure of 100 torr at 35°C. Instant, is the pressure in the flask greater than, less than, or equal to 100 torr? Justify your the flask increases. In terms of kinetic molecular theory, provide TWO reasons that the
empty 1.0 L flask. The temperature of the flask is held of to decompose according to the chemical reaction representation of ethanol gas over time is used to create the concentration of ethanol gas over time is used	$HO(g) + H_2(g)$ eate the three graphs below.
0.0100 0.0080 0.0060 0.0040 0.0020 0.0020	-5.00 -5.50 -6.00
0 500 1000 1500 2000 Time (s)	()6.50
(ii) Write the rate law for the reaction.(iii) Determine the rate constant for the reaction.	on, including units. eriment is 0.40 atm. If the ethanol completely decomposes, what is the final pressure in
a. equal to 100 torr	ble the system has reached
equilibrium	
6. More kinetic er	ergy so there are more molecules
as Japer av	nd there are more collisions
with the w	alls of the container
Ci Zero order bl Straight line	c III vs time graph shows a
cui Rate = K	
0.0025-0.0100 Cúi 2000- Ø	= 0.0080 = [4.0 x10-6 He]
d. 0.40 x2 = 6.5	80 atm

2. $A(aq) + 2 B(aq) \rightarrow 3 C(aq) + D(aq)$

For the reaction above, carried out in solution at 30 °C, the following kinetic data were obtained:

Experiment	Initial concentration of Reactants mole liter ¹		Initial Rate of Reaction mole liter hour 1
	A_{o}	B_o	
1	0.12	0.18	3.46×10^{-2}
2	0.060	0.12	1.15×10^{-2}
3	0.030	0.090	4.32 x 10 ⁻³
4	0.24	0.090	3.46 x 10 ⁻²

- (a) What is the order of the reaction with respect to A?
- (b) What is the order of the reaction with respect to B?
- (c) Write the rate-law expression for this reaction.
- (d) Calculate the value of the specific rate constant k at 30°C and specify its units.

(e) Assume that the reaction goes to completion. Under the conditions specimolar concentration of C?	thed for experiment 2, what would be the final
a. 4 3.46× 10-2 (.24) b. 1	3.46×10-2 (.12× .18)
3 H.32×10-3 (.030) Z	1.15×10-2 (.06) (0.12)
8 = 8"	3=(2)(1.5)
TEN	1.5: 1.5
	MEI
c. Rate: K[A][B]	
d. 3.46×10-2 = K[0,12)[0,18] = [1	.60 M'hr-1)
e. A+ZB -> 3C +D	
0.060 0.12	
× -2× +3×	
M81.0.18M	