Nama	AP Chemistry
Name	AP Chemistry

HW 11_4: Due 2/16/17 Write the letter of the correct answer on the line in front of the question.

1	What mass of K	Br (molar mass 119	g mol ⁻¹) is requir	ed to make 250. mL of a 0.4	400 <i>M</i> KBr		
solution?	(D) 1 10 ~	(C) 2.50 -	(D) 11 0 -	(E) 47.6 =			
(A) 0.595 g	(B) 1.19 g	(C) 2.50 g	(D) 11.9 g	(E) 47.0 g			
2 A sample of a solution of RbCl (molar mass 121 g mol ⁻¹) contains 11.0 percent RbCl by mass. From the following information, what is needed to determine the molarity of RbCl in the solution? I. Mass of the sample II. Volume of the sample							
(A) Lonly	III. Temperature o	f the sample	I and II only				
(A) I only (D) II a	and III only	y (C) (E) I, II, and	III				
3	Which of the f (B) 0.25		utions has the hig 0.30 M NaCl	ghest boiling point at 1.0 atı	m?		
4(A) freezing poi	Molarity units nt depression (D) surfa	are most appropriate (B) vapor proce tension	in calculating wh essure (E	ich of the following? (C) boiling point elev) osmotic pressure	vation		
		I ₂ SO ₄ (molecular wei (C) 29.4 grams (D)		0 milliliters of a 6.00-molar 0 300. grams	solution is		
6(A) 0.20 m C ₆ H	Which of the following $_{12}O_6$, glucose (D) 0.20 m KMnC	owing solutions has t (B) 0.20 m NH ₄ Br (E)	(C	point?) 0.20 m ZnSO ₄			
7 If the temperature of an aqueous solution of NaCl is increased from 20 °C to 90 °C, which of the following statements is true? (A) The density of the solution remains unchanged. (B) The molarity of the solution remains unchanged. (C) The molality of the solution remains unchanged. (D) The mole fraction of solute decreases. (E) The mole fraction of solute increases.							
Mole fractions a	are typically used to	calculate which prope	erties for solution	pressure III. vapor pressure is containing nonvolatile solution (E) II and III only	ressure lutes?		
contributing fac (A) the higher so (B) the decrease (C) the high terr (D) the toxicity	tor is the use of oxygolubility of toxic med a solubility of oxygon perature itself kills to of decaying algae	gen by decaying algae tals in the summer en at higher temperati	e. Another factor	summer but rarely in the vis:	vinter. A		
(A) the decrease(B) smaller attra(C) the hydroge(D) the change in	e in volume when the active forces in the m n bonding of the two in vapor pressure obs	ey are mixed hixture than in the pur b liquids	e liquids	ly warmer when mixed. Th	is is due to:		

	The molal	ity of the glucose in a 1	.0-molar glucose solution	can be obtained by using which of
the following?				
(A) Volume of t		(B) Tempo dissociation of glucose		(C) Solubility of glucose in water ty of the solution
12		e mole fraction of ethan	nol, C ₂ H ₅ OH, in an aqueou	as solution in which the ethanol
(A) 0.0046	(B) 0.076	(C) 0.083	(D) 0.20	(E) 0.72
	If equal n		th of the following are diss	olved in 1 kg of distilled water, the
(A) NaF	(B) AlCl ₃	(C) $Mg(C_2H_3O_2)_2$	(D) CH ₃ CH ₂ COOI	$H \qquad (E) C_6 H_6$
(a) What is the r(b) What volum dilution with wa(c) In order to o	molarity of this see of this solution ater? btain a precise c	solution of HCl? In should be taken in ord oncentration, the 0.20-1		0.20-molar hydrochloric acid by standardized against pure HgO
In a typical expo	$HgO(s) + 4I^{-}$ eriment, 0.7147	+ H ₂ O → HgI ₄ ²⁻ + 2OH gram of HgO required 3		rochloric acid solution for titration