| Name AP Chemistry | |--| | HW 1: Due 2/6/15 Complete both free response questions. One will be graded. Show all work. Box and clearly label all final answers | | A rigid 11.06 L cylinder contains 19.73 g of Cl₂(g) and 19.73 g of F₂(g). (a) Calculate the total pressure, in atm, of the gas mixture in the cylinder at 298 K. (b) The temperature of the gas mixture in the cylinder is increased to 370 K. Calculate each of the following. (i) The mole fraction of F₂(g) in the cylinder (ii) The partial pressure, in atm, of F₂(g) in the cylinder (c) If the chlorine molecules travel at a rate of 361 m/s at 370 K, at what rate will the fluorine molecules travel? | | A different rigid 3.70 L cylinder contains 0.973 mol of NO(g) at 298 K. A 0.973 mol sample of O ₂ (g) is added to the cylinder, where a reaction occurs to produce NO ₂ (g). (d) Write the balanced equation for the reaction. (e) Calculate the total pressure, in atm, in the cylinder at 298 K after the reaction is complete. | | | | a. 19,73 , C/2 +70.90 = 0,2783 malo C/2 | | 19.73 fr +38.00 = 0.5192 moles F2 | | 0.2783 + 0.5192= 0.7975 total moles | | Prinkt P. NRT: (0.7975)(298) | | Nioc | | P=1.763 atm. | | bi: 0.5192 sto.6510 | | 0.7975 | | bin P= (0.5192) 0.08206) 41.4 atm | | C. X +38.00 [X=493 N/S] | | d, 2NO + 0, -> 2NO2) P= 3,70 0973 0973 B P=9,65 atm | | | -2x -x +2x 0.4865 0.983. (a) Write a balanced equation for the complete combustion of butane gas, which yields CO₂(g) and H₂O(l). (b) Calculate the volume of air at 73°C and 1.00 atmospheres that is needed to burn completely 37.0 grams of butane. Assume that air is 21.0 percent O_2 by volume. (c) The heat of combustion of butane is -2,881.9 kJ/mol. Calculate the heat of formation, ΔH°_f, of butane given that ΔH°_f of $H_2O(1) = -285.3 \text{ kJ/mol}$ and ΔH°_f of $CO_2(g) = -393.5 \text{ kJ/mol}$. (d) If the enthalpy of vaporization for $H_2O(1)$ is 44.0 kJ/mol, what is ΔH° for the combustion reaction above if $H_2O(g)$ is formed instead of H₂O(1)? (e) Assuming that all of the heat evolved in burning 73.0 grams of butane is transferred to 11.06 kilograms of water (specific heat = $4.184 \text{ J/g} \cdot \text{K}$), calculate the increase in temperature of the water. \$800, + 10 H20 (0) AH=-5+63.8KI NH = 440 KZ 2. Butane, C₄H₁₀, is a hydrocarbon that is commonly used as fuel for in lighters. 2. 73+58 = 1.26 mbs q=MCAT 2 mbon 1.26 mbs DT:(3631) -5763.9 X (11.06)(11.184) X = 3631XJ ZT=78.51K