Name \qquad AP Chemistry \qquad

Chapter 3 HW \#2

Empirical/Molecular Formula Review

Answer the following questions that relate to the analysis of chemical compounds.

1. Elemental analysis of this unknown compound yields the following percentages by weight: $\mathrm{H}=9.74 \%$; $\mathrm{C}=$ $38.70 \% ; \mathrm{O}=51.56 \%$. Determine the empirical formula of the compound.
2. Assume that you have a gas with the following elementary analysis: $\mathrm{C}, 85.7 \% ; \mathrm{H}, 14.3 \%$. Each gas has a molecular weight of 56 . What is the molecular formula for the compound?
3. A hydrocarbon is found to contain 93.46% carbon and 6.54% hydrogen. Calculate the empirical formula of the unknown hydrocarbon.
4. Two volatile compounds Y and Z each contain element Q. The percent by weight of element Q in each compound was determined. Some of the data obtained are given below.

Compound	Percent by Weight of Element Q	Molecular Weight
Y	73.0%	104.
Z	59.3%	64.0

(a) Determine the mass of element Q contained in 1.00 mole of each of the compounds.
(b) Calculate the most probable value of the atomic weight of element Q .
(c) Compound Z contains carbon, hydrogen, and element Q . When 1.00 gram of compound Z is oxidized and all of the carbon and hydrogen are converted to oxides, 1.37 grams of CO_{2} and 0.281 gram of water are produced.
Determine the most probable molecular formula of compound Z .
5. Elemental analysis of an unknown pure substance indicates that the percent composition by mass is as follows: Carbon -49.02%, Hydrogen -2.743%, Chlorine -48.23%. Determine the empirical formula of the unknown substance.
6. An unknown compound contains only the three elements C, H, and O . A pure sample of the compound is analyzed and found to be 65.60 percent C and 9.44 percent H by mass. Calculate the empirical formula of the unknown hydrocarbon.
7. Answer the following questions about acetylsalicylic acid, the active ingredient in aspirin. The amount of acetylsalicylic acid in a single aspirin tablet is 325 mg , yet the tablet has a mass of 2.00 g . Calculate the mass percent of acetylsalicylic acid in the tablet.
8. In an experiment, a sample of an unknown, pure gaseous hydrocarbon was analyzed. Results showed that the sample contained 6.000 g of carbon and 1.344 g of hydrogen. Determine the empirical formula of the hydrocarbon.
9. Answer the following questions about a pure compound that contains only carbon, hydrogen, and oxygen. A 0.7549 g sample of the compound burns in $\mathrm{O}_{2}(\mathrm{~g})$ to produce 1.9061 g of $\mathrm{CO}_{2}(\mathrm{~g})$ and 0.3370 g of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
(i) Calculate the individual masses of C, H, and O in the 0.7549 g sample.
(ii) Determine the empirical formula for the compound.

