\qquad AP Chem

Chapter 13 - Homework

Solve the following gas, thermodynamic and equilibrium problems. Circle and write the correct letter on the line in front of the problem.

1. \qquad The density of an unknown gas is 4.20 grams per liter at 3.00 atmospheres pressure and $127^{\circ} \mathrm{C}$. What is the molecular weight of this gas? $(\mathrm{R}=0.0821$ liter-atm / mole-K)
(A) 14.6
(B) 46.0
(C) 88.0
(D) 94.1
(E) 138
2. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ; \quad \Delta \mathrm{H}=-889.1 \mathrm{~kJ}$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-285.8 \mathrm{~kJ} / \mathrm{mole}$
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ} \mathrm{CO}_{2}(\mathrm{~g})=-393.3 \mathrm{~kJ} / \mathrm{mole}$

What is the standard heat of formation of methane, $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ} \mathrm{CH}_{4}(\mathrm{~g})$, as calculated from the data above?
(A) $-210.0 \mathrm{~kJ} / \mathrm{mole}$
(B) $-107.5 \mathrm{~kJ} / \mathrm{mole}$
(C) $-75.8 \mathrm{~kJ} / \mathrm{mole}$
(D) $75.8 \mathrm{~kJ} / \mathrm{mole}$
(E) $210.0 \mathrm{~kJ} / \mathrm{mole}$
3. \qquad When the actual gas volume is greater then the volume predicted by the ideal gas law, the explanation lies in the fact that the ideal gas law does NOT include a factor for molecular.
(A) volume
(B) mass
(C) velocity
(D) attractions
(E) shape
4. Hydrogen gas is collected over water at $24^{\circ} \mathrm{C}$. The total pressure of the sample is 755 millimeters of mercury. At 24 ${ }^{\circ} \mathrm{C}$, the vapor pressure of water is 22 millimeters of mercury. What is the partial pressure of the hydrogen gas?
(A) 22 mm Hg
(B) 733 mm Hg
(C) 755 mm Hg
(D) 760 mm Hg
(E) 777 mm Hg
5. \qquad A 2.00-liter sample of nitrogen gas at $27^{\circ} \mathrm{C}$ and 600 . millimeters of mercury is heated until it occupies a volume of 5.00 liters. If the pressure remains unchanged, the final temperature of the gas is
(A) $68{ }^{\circ} \mathrm{C}$
(B) $120^{\circ} \mathrm{C}$
(C) $477^{\circ} \mathrm{C}$
(D) $677{ }^{\circ} \mathrm{C}$
(E) $950 .{ }^{\circ} \mathrm{C}$
6. \qquad Which of the following is the correct equilibrium expression for the hydrolysis of $\mathrm{CO}_{3}{ }^{2-}$?
(A) $\mathrm{K}=\left[\mathrm{HCO}_{3}^{-}\right.$
$] /\left(\left[\mathrm{CO}_{3}{ }^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)$
(B) $\mathrm{K}=\left(\left[\mathrm{HCO}_{3}^{-}\right]\left[\mathrm{OH}^{-}\right]\right) /\left[\mathrm{CO}_{3}{ }^{2-}\right]$
(C) $\mathrm{K}=\left(\left[\mathrm{CO}_{3}^{2-}\right]\left[\mathrm{OH}^{-}\right]\right) /\left[\mathrm{HCO}_{3}^{-}\right]$
(D) $\mathrm{K}=\left[\mathrm{CO}_{3}{ }^{2-}\right] /\left(\left[\mathrm{CO}_{2}\right]\left[\mathrm{OH}^{-}\right]^{2}\right)$
(E) $\mathrm{K}=\left(\left[\mathrm{CO}_{3}{ }^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right) /\left[\mathrm{HCO}_{3}{ }^{-}\right]$
7._ As the temperature is raised from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$, the average kinetic energy of neon atoms changes by a factor of
(A) $1 / 2$
(B) $\sqrt{(313 / 293)}$
(C) $313 / 293$
(D) 2
(E) 4
8. \qquad A sample of 0.0100 mole of oxygen gas is confined at $37^{\circ} \mathrm{C}$ and 0.216 atmospheres. What would be the pressure of this sample at $15^{\circ} \mathrm{C}$ and the same volume?
(A) 0.0876 atm
(B) 0.175 atm
(C) 0.201 atm
(D) 0.233 atm
(E) 0.533 atm
9. \qquad Based on the information below, what is the standard enthalpy change for the following reaction?

$$
\mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{~s})
$$

$\mathrm{H}_{2}(\mathrm{~g})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta \mathrm{H}^{\circ}=-286 \mathrm{~kJ}$
$2 \mathrm{Na}(\mathrm{s})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$
$\Delta \mathrm{H}^{\circ}=-414 \mathrm{~kJ}$
$\mathrm{Na}(\mathrm{s})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g})+(1 / 2) \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaOH}(\mathrm{s})$
$\Delta \mathrm{H}^{\circ}=-425 \mathrm{~kJ}$
(A) $-1,125 \mathrm{~kJ}$
(B) -978 kJ
(C) -722 kJ
(D) -150 kJ
(E) +275 kJ
10. \qquad A hydrocarbon gas with an empirical formula CH_{2} has a density of 1.88 grams per liter at $0^{\circ} \mathrm{C}$ and 1.00 atmospheres. A possible formula for the hydrocarbon is:
(A) CH_{2}
(B) $\mathrm{C}_{2} \mathrm{H}_{4}$
(C) $\mathrm{C}_{3} \mathrm{H}_{6}$
(D) $\mathrm{C}_{4} \mathrm{H}_{8}$
(E) $\mathrm{C}_{5} \mathrm{H}_{10}$
11. \qquad A sample of 3.30 grams of an ideal gas at $150.0^{\circ} \mathrm{C}$ and 1.25 atmospheres pressure has a volume of 2.00 liters. What is the molar mass of the gas? (The gas constant, R , is $0.0821 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$).
(A) $0.0218 \mathrm{gram} / \mathrm{mole}$
(B) 16.2 grams $/ \mathrm{mole}$
(C) $37.0 \mathrm{grams} / \mathrm{mole}$
(D) 45.8 grams $/ \mathrm{mole}$
(E) $71.6 \mathrm{grams} / \mathrm{mole}$

12.

$4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})<===>2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Equal numbers of moles of HCl and O_{2} in a closed system are allowed to reach equilibrium as represented by the equation above. Which of the following must be true at equilibrium?
I. $[\mathrm{HCl}]$ must be less than $\left[\mathrm{Cl}_{2}\right]$.
II. $\left[\mathrm{O}_{2}\right]$ must be greater than $[\mathrm{HCl}]$.
III. $\left[\mathrm{Cl}_{2}\right]$ must equal $\left[\mathrm{H}_{2} \mathrm{O}\right]$.
(A) I only
(B) II only
(C) I and III only
(D) II and III only
(E) I, II, and III
13. \qquad $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})\left\langle===>2 \mathrm{SO}_{3}(\mathrm{~g})\right.$
When 0.40 mole of SO_{2} and 0.60 mole of O_{2} are placed in an evacuated 1.00-liter flask, the reaction represented above occurs. After the reactants and the product reach equilibrium and the initial temperature is restored, the flask is found to contain 0.30 mole of SO_{3}. Based on these results, the equilibrium constant, K_{c} for the reaction is
(A) 20.
(B) 10 .
(C) 6.7
(D) 2.0
(E) 1.2
14. \qquad A hot-air balloon rises. Which of the following is the best explanation for this observation?
(A) The pressure on the walls of the balloon increases with increasing temperature.
(B) The difference in temperature between the air inside and outside the balloon produces convection currents.
(C) The cooler air outside the balloon pushes in on the walls of the balloon.
(D) The rate of diffusion of cooler air is less than that of warmer air.
(E) The air density inside the balloon is less than that of the surrounding air.
15. \qquad $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
A 0.03 mol sample of $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$ is placed in a 1 L evacuated flask, which is then sealed and heated. $\mathrm{NH}_{4} \mathrm{NO}_{3}$ decomposes completely according to the balanced equation above. The total pressure in the flask measured at 400 K is closest to which of the following? (The value of the gas constant, R , is $0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$)
(A) 3 atm
(B) 1 atm
(C) 0.5 atm
(D) 0.1 atm
(E) 0.03 atm
16.

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

For the reaction of ethylene represented above, $\Delta \mathrm{H}$ is $-1,323 \mathrm{~kJ}$. What is the value of $\Delta \mathrm{H}$ if the combustion produced liquid water $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, rather than water vapor $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$? ($\Delta \mathrm{H}$ for the phase change $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is $-44 \mathrm{~kJ} \mathrm{~mol}^{-1}$.)
(A) $-1,235 \mathrm{~kJ}$
(B) $-1,279 \mathrm{~kJ}$
(C) $-1,323 \mathrm{~kJ}$
(D) $-1,367 \mathrm{~kJ}$
(E) $-1,411 \mathrm{~kJ}$

Questions 17-19 refer to the following gases at $0^{\circ} \mathrm{C}$ and 1 atm .
(A) Ne
(B) Xe
(C) O_{2}
(D) CO
(E) NO
17. \qquad Has an average atomic or molecular speed closest to that of N_{2} molecules at $0^{\circ} \mathrm{C}$ and 1 atm
18. \qquad Has the greatest density
19. \qquad Has the greatest rate of effusion through a pinhole
20. \qquad A flask contains 0.25 mole of $\mathrm{SO}_{2}(g), 0.50$ mole of $\mathrm{CH}_{4}(g)$, and 0.50 mole of $\mathrm{O}_{2}(g)$. The total pressure of the gases in the flask is 800 mm Hg . What is the partial pressure of the $\mathrm{SO}_{2}(g)$ in the flask?
(A) 800 mm Hg
(B) 600 mm Hg
(C) 250 mm Hg
(D) 200 mm Hg
(E) 160 mm Hg

$$
3 \mathrm{C}_{2} \mathrm{H}_{2}(g) \rightleftharpoons \mathrm{C}_{6} \mathrm{H}_{6}(g)
$$

21. \qquad What is the standard enthalpy change, ΔH°, for the reaction represented above? $\left(\Delta H_{f}^{\circ}\right.$ of $\mathrm{C}_{2} \mathrm{H}_{2}(g)$ is $230 \mathrm{~kJ} \mathrm{~mol}^{-1}$; $\Delta H_{\mathrm{f}}^{\circ}$ of $\mathrm{C}_{6} \mathrm{H}_{6}(g)$ is $83 \mathrm{~kJ} \mathrm{~mol}^{-1}$.)
(A) -607 kJ
(B) -147 kJ
(C) -19 kJ
(D) +19 kJ
(E) +773 kJ
22. \qquad A 2 L container will hold about 4 g of which of the following gases at $0^{\circ} \mathrm{C}$ and 1 atm ?
(A) SO_{2}
(B) N_{2}
(C) CO_{2}
(D) $\mathrm{C}_{4} \mathrm{H}_{8}$
(E) NH_{3}
$\mathrm{CS}_{2}(l)+3 \mathrm{O}_{2}(g) \square \mathrm{CO}_{2}(g)+2 \mathrm{SO}_{2}(g)$
23. What volume of $\mathrm{O}_{2}(g)$ is required to react with excess $\mathrm{CS}_{2}(l)$ to produce 4.0 L of $\mathrm{CO}_{2}(g)$? (Assume all gases are measured at $0^{\circ} \mathrm{C}$ and 1 atm .)
(A) 12 L
(B)
22.4 L (C)
$1 / 3 \square 22.4 \mathrm{~L}$
(D) $\quad 2 \square 22.4 \mathrm{~L}$
(E) $\quad 3 \square 22.4 \mathrm{~L}$
$\mathrm{HCO}_{3}^{-}(a q)+\mathrm{OH}^{-}(a q) \leftrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{3}{ }^{2-}(a q) \quad \Delta H=-41.4 \mathrm{~kJ}$
24. When the reaction represented by the equation above is at equilibrium at 1 atm and $25^{\circ} \mathrm{C}$, the ratio $\frac{\left[\mathrm{CO}_{3}^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}$can be increased by doing which of the following?

(A)	Decreasing the temperature	(B) \quad Adding acid
(C)	Adding a catalyst	(D)
diluting the solution with distilled water		

(E) Bubbling neon gas through the solution
40. An excess of $\mathrm{Mg}(s)$ is added to $100 . \mathrm{mL}$ of 0.400 MHCl . At $0^{\circ} \mathrm{C}$ and 1 atm pressure, what volume of H_{2} gas can be obtained? (A) $\quad 22.4 \mathrm{~mL}(\mathrm{~B}) \quad 44.8 \mathrm{~mL}(\mathrm{C}) \quad 224 \mathrm{~mL}$ (D) $\quad 448 \mathrm{~mL}$ (E) $\quad 896 \mathrm{~mL}$
$\mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g) \leftrightarrow 2 \operatorname{HBr}(g)$
42. At a certain temperature, the value of the equilibrium constant, K, for the reaction represented above is $2.0 \square 10^{5}$. What is the value of K for the reverse reaction at the same temperature?
(A) $\quad-2.0 \square 10^{-5}$
(B)
$5.0 \square 10^{-6}$
(C) $2.0 \square 10^{-5}$
(D) $5.0 \square 10^{-5}$
(E) $\quad 5.0 \square 10^{-4}$
53. According to the VSEPR model, the progressive decrease in the bond angles in the series of molecules $\mathrm{CH}_{4}, \mathrm{NH}_{3}$, and $\mathrm{H}_{2} \mathrm{O}$ is best accounted for by the
(A) increasing strength of the bonds
(B) decreasing size of the central atom
(C) increasing electronegativity of the central atom
(D) increasing number of unshared pairs of electrons
(E) decreasing repulsion between hydrogen atoms

