Covalent Bond Energies and Chemical Reactions

- Consider the stepwise decomposition of methane:
 - $CH_4(g) \rightarrow CH_3(g) + H(g)$ energy required: 435 kJ/mol
 - $CH_3(g) \rightarrow CH_2(g) + H(g)$ energy required: 453 kJ/mol
 - $CH_2(g) \rightarrow CH(g) + H(g)$ energy required: 425 kJ/mol
 - $CH(g) \rightarrow C(g) + H(g)$ energy required: 339 kJ/mol
 - $Total = 1652 \div 4 = 413 \text{ kJ/mol}$
 - Note that the C—H bond is somewhat sensitive to its environment
- Consider the following molecules and the measured C—H bond energy (kJ/mol)

Molecule	Measure C-H bond		
	energy (kJ/mol)		
HCBr ₃	380		
HCCl ₃	380		
HCF ₃	430		
C_2H_6	410		

- Again, C—H bond strength varies significantly with its environment, but the concept of an average bond energy is helpful to chemists.
- The average bond energies for various types of bonds are listed below.

TABLE 8.4 Average Bond Energies (kJ/mol)								
Single Bonds					Multiple	Multiple Bonds		
н—н	432	N—H	391	I—I	149	C=C	614	
H—F	565	N—N	160	I—Cl	208	C≡C	839	
H—Cl	427	N—F	272	I—Br	175	0=0	495	
H—Br	363	N—Cl	200			C=O*	745	
H—I	295	N—Br	243	S—H	347	C≡O	1072	
		N—O	201	S—F	327	N=O	607	
С—Н	413	О—Н	467	S-Cl	253	N=N	418	
C—C	347	0-0	146	S—Br	218	$N \equiv N$	941	
C-N	305	O—F	190	s—s	266	C≡N	891	
С—О	358	O—Cl	203			C=N	615	
C-F	485	O—I	234	Si—Si	340			
C—Cl	339			Si—H	393			
C—Br	276	F—F	154	Si—C	360			
C—I	240	F-Cl	253	Si—O	452			
C—S	259	F—Br	237					
		Cl—Cl	239					
		Cl—Br	218					
		Br—Br	193					

- $*C=O(CO_2) = 799$ In a single bond, one pair of electrons is shared, in a double bond, two pairs of electrons are shared and in a triple bond, three pairs of electrons are shared. Single bonds are the longest and weakest of the bonds. Triple bonds are the shortest and the strongest of the bonds.
- For bonds to be broken, energy must be added to a system an endothermic process.
- Energy is released when a bond is formed.
- $\Delta H^{\circ} = \Sigma D$ (bonds broken) ΣD (bonds formed), Σ represents the sum of terms and D represents the bond energy per mole of bonds

- Example: Using the bond energies from above, calculate the ΔH for the reaction of methane with chlorine and fluorine to give Freon-12 (CF₂Cl₂)
 - $CH_4(g) + 2Cl_2(g) + 2F_2(g) \rightarrow CF_2Cl_2(g) + 2HF(g) + 2HCl(g)$
 - Bonds broken:
 - \bullet C—H: 4 x 413 = 1652 kJ
 - Cl— $Cl : 2 \times 239 = 478 \text{ kJ}$
 - $F F: 2 \times 154 \text{ kJ} = 308 \text{ kJ}$
 - Total = 2438 kJ
 - Bonds formed:
 - C—F: 2 x 485 = 970 kJ
 - C—C1: $2 \times 339 = 678 \text{ kJ}$
 - H—F: 2 x 565 = 1130 kJ
 - H—Cl: $2 \times 427 = 854 \text{ kJ}$
 - Total energy released = 3632 kJ
 - \circ ΔH° = ΣD (bonds broken) ΣD (bonds formed)
 - $\Delta H^{\circ} = 2438 \text{ kJ} 3632 \text{ kJ} = -1194 \text{ kJ}$

Homework: Calculate the ΔH for each reaction below:

1.
$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

941
$$+3(432) \rightarrow 6(391)$$

$$\Delta H^{\circ} = -109 \text{ kJ}$$

2.
$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O$$

$$4(413) + 2(495) \rightarrow 2(799) + 4(467)$$

$$1652 + 990 \rightarrow 1598 + 4(467)$$

$$\Delta H^{\circ} = -824 \text{ kJ}$$

3.
$$CO(g) + 2 H_2(g) <===> CH_3OH(1)$$

$$1072 + 2(432) < = = > 3(413) + (358) + (467)$$

$$\Delta H^{\circ} = -128 \text{ kJ}$$

4.
$$C_2H_5Cl(g) + Cl_2(g) <===> C_2H_4Cl_2(g) + HCl(g)$$

$$5(413) + (339) + (347) + (239) <===> 4(413) + 2(339) + (347) + (427)$$

 $2990 <===> 3104$

$$\Delta H^{\circ} = -114 \text{ kJ}$$

5.
$$Cl_2(g) + 3F_2(g) \rightarrow 2ClF_3(g)$$

$$(239) + 3(154) \rightarrow 6(253)$$

$$\Delta H^{\circ} = -817 \text{ kJ}$$