$\qquad$

## Covalent Bond Energies and Chemical Reactions

- Consider the stepwise decomposition of methane:
- $\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3}(\mathrm{~g})+\mathrm{H}(\mathrm{g}) \quad$ energy required: $435 \mathrm{~kJ} / \mathrm{mol}$
- $\mathrm{CH}_{3}(\mathrm{~g}) \rightarrow \mathrm{CH}_{2}(\mathrm{~g})+\mathrm{H}(\mathrm{g}) \quad$ energy required: $453 \mathrm{~kJ} / \mathrm{mol}$
- $\mathrm{CH}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}(\mathrm{g})+\mathrm{H}(\mathrm{g}) \quad$ energy required: $425 \mathrm{~kJ} / \mathrm{mol}$
- $\mathrm{CH}(\mathrm{g}) \rightarrow \mathrm{C}(\mathrm{g})+\mathrm{H}(\mathrm{g}) \quad$ energy required: $339 \mathrm{~kJ} / \mathrm{mol}$
- Total $=1652 \div 4=413 \mathrm{~kJ} / \mathrm{mol}$
- Note that the $\mathrm{C}-\mathrm{H}$ bond is somewhat sensitive to its environment
- Consider the following molecules and the measured $\mathrm{C}-\mathrm{H}$ bond energy ( $\mathrm{kJ} / \mathrm{mol}$ )

| Molecule | Measure C-H bond <br> energy $(\mathrm{kJ} / \mathrm{mol})$ |
| :---: | :---: |
| $\mathrm{HCBr}_{3}$ | 380 |
| $\mathrm{HCCl}_{3}$ | 380 |
| $\mathrm{HCF}_{3}$ | 430 |
| $\mathrm{C}_{2} \mathrm{H}_{6}$ | 410 |

- Again, $\mathrm{C}-\mathrm{H}$ bond strength varies significantly with its environment, but the concept of an average bond energy is helpful to chemists.
- The average bond energies for various types of bonds are listed below.

TABLE 8.4 Average Bond Energies (kJ/mol)

| Single Bonds |  |  |  |  |  | Multiple Bonds |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}-\mathrm{H}$ | 432 | $\mathrm{N}-\mathrm{H}$ | 391 | I-I | 149 | $\mathrm{C}=\mathrm{C}$ | 614 |
| H-F | 565 | $\mathrm{N}-\mathrm{N}$ | 160 | $\mathrm{I}-\mathrm{Cl}$ | 208 | $\mathrm{C} \equiv \mathrm{C}$ | 839 |
| $\mathrm{H}-\mathrm{Cl}$ | 427 | $\mathrm{N}-\mathrm{F}$ | 272 | $\mathrm{I}-\mathrm{Br}$ | 175 | $\mathrm{O}=\mathrm{O}$ | 495 |
| $\mathrm{H}-\mathrm{Br}$ | 363 | $\mathrm{N}-\mathrm{Cl}$ | 200 |  |  | $\mathrm{C}=\mathrm{O}^{*}$ | 745 |
| H-I | 295 | $\mathrm{N}-\mathrm{Br}$ | 243 | S-H | 347 | $\mathrm{C} \equiv \mathrm{O}$ | 1072 |
|  |  | $\mathrm{N}-\mathrm{O}$ | 201 | S-F | 327 | $\mathrm{N}=\mathrm{O}$ | 607 |
| $\mathrm{C}-\mathrm{H}$ | 413 | $\mathrm{O}-\mathrm{H}$ | 467 | $\mathrm{S}-\mathrm{Cl}$ | 253 | $\mathrm{N}=\mathrm{N}$ | 418 |
| $\mathrm{C}-\mathrm{C}$ | 347 | $\mathrm{O}-\mathrm{O}$ | 146 | $\mathrm{S}-\mathrm{Br}$ | 218 | $\mathrm{N} \equiv \mathrm{N}$ | 941 |
| $\mathrm{C}-\mathrm{N}$ | 305 | $\mathrm{O}-\mathrm{F}$ | 190 | S-S | 266 | $\mathrm{C} \equiv \mathrm{N}$ | 891 |
| $\mathrm{C}-\mathrm{O}$ | 358 | $\mathrm{O}-\mathrm{Cl}$ | 203 |  |  | $\mathrm{C}=\mathrm{N}$ | 615 |
| $\mathrm{C}-\mathrm{F}$ | 485 | O-I | 234 | $\mathrm{Si}-\mathrm{Si}$ | 340 |  |  |
| $\mathrm{C}-\mathrm{Cl}$ | 339 |  |  | $\mathrm{Si}-\mathrm{H}$ | 393 |  |  |
| $\mathrm{C}-\mathrm{Br}$ | 276 | F-F | 154 | $\mathrm{Si}-\mathrm{C}$ | 360 |  |  |
| C-I | 240 | $\mathrm{F}-\mathrm{Cl}$ | 253 | $\mathrm{Si}-\mathrm{O}$ | 452 |  |  |
| $\mathrm{C}-\mathrm{S}$ | 259 | $\mathrm{F}-\mathrm{Br}$ | 237 |  |  |  |  |
|  |  | $\mathrm{Cl}-\mathrm{Cl}$ | 239 |  |  |  |  |
|  |  | $\mathrm{Cl}-\mathrm{Br}$ | 218 |  |  |  |  |
|  |  | $\mathrm{Br}-\mathrm{Br}$ | 193 |  |  |  |  |

- In a single bond, one pair of electrons is shared, in a double bond, two pairs of electrons are shared and in a triple bond, three pairs of electrons are shared. Single bonds are the longest and weakest of the bonds. Triple bonds are the shortest and the strongest of the bonds.
- For bonds to be broken, energy must be added to a system - an endothermic process.
- Energy is released when a bond is formed.
- $\Delta \mathbf{H}^{\circ}=\Sigma \mathbf{D}$ (bonds broken) - $\boldsymbol{\Sigma D}$ (bonds formed), $\Sigma$ represents the sum of terms and D represents the bond energy per mole of bonds
- Example: Using the bond energies from above, calculate the $\Delta \mathrm{H}$ for the reaction of methane with chlorine and fluorine to give Freon-12 $\left(\mathrm{CF}_{2} \mathrm{Cl}_{2}\right)$
- $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{CF}_{2} \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{g})+2 \mathrm{HCl}(\mathrm{g})$
- Bonds broken:
- $\mathrm{C}-\mathrm{H}: 4 \times 413=1652 \mathrm{~kJ}$
- $\mathrm{Cl}-\mathrm{Cl}: 2 \times 239=478 \mathrm{~kJ}$
- $\mathrm{F}-\mathrm{F}: 2 \times 154 \mathrm{~kJ}=308 \mathrm{~kJ}$
- Total $=2438 \mathrm{~kJ}$
- Bonds formed:
- C-F: $2 \times 485=970 \mathrm{~kJ}$
- C-Cl: $2 \times 339=678 \mathrm{~kJ}$
- H—F: $2 \times 565=1130 \mathrm{~kJ}$
- $\mathrm{H}-\mathrm{Cl}: 2 \times 427=854 \mathrm{~kJ}$
- Total energy released $=3632 \mathrm{~kJ}$
- $\Delta \mathrm{H}^{\circ}=\Sigma \mathrm{D}$ (bonds broken) $-\Sigma \mathrm{D}$ (bonds formed)
- $\Delta \mathrm{H}^{\circ}=2438 \mathrm{~kJ}-3632 \mathrm{~kJ}=-1194 \mathrm{~kJ}$

Homework: Calculate the $\Delta \mathrm{H}$ for each reaction below:

1. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
$941+3(432) \rightarrow 6(391)$
$2237 \rightarrow 2346$
$\Delta H^{\circ}=\mathbf{- 1 0 9} \mathrm{kJ}$
2. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}$
$4(413)+2(495) \rightarrow 2(799)+4(467)$
$1652+990 \rightarrow 1598+4(467)$
$2642 \rightarrow 3466$
$\Delta \mathrm{H}^{\circ}=\mathbf{- 8 2 4} \mathrm{kJ}$
3. $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})<===>\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
$1072+2(432)<===>3(413)+(358)+(467)$
1936 <===> 2064
$\Delta \mathrm{H}^{\circ}=\mathbf{- 1 2 8} \mathrm{kJ}$
4. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})\left\langle==\Rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})\right.$

$$
\begin{gathered}
5(413)+(339)+(347)+(239) \Leftrightarrow==>4(413)+2(339)+(347)+(427) \\
2990<===>3104 \\
\Delta \mathbf{H}^{\circ}=\mathbf{- 1 1 4} \mathbf{~ k J}
\end{gathered}
$$

5. $\quad \mathrm{Cl}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ClF}_{3}(\mathrm{~g})$ $(239)+3(154) \rightarrow 6(253)$

$$
701 \rightarrow 1518
$$

$$
\Delta \mathrm{H}^{\circ}=-817 \mathrm{~kJ}
$$

