\qquad

Hess's Law Answers

1. What is heat of reaction for the following reaction?

$$
\mathrm{C}_{\text {graphite }}(\mathrm{s}) \rightarrow \mathrm{C}_{\text {diamond }}(\mathrm{s})
$$

The following is known.

$$
\begin{array}{ll}
\mathrm{C}_{\text {graphite }}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-394 \mathrm{~kJ} \\
\underline{\mathrm{C}}_{\text {diamond }}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-396 \mathrm{~kJ}
\end{array} \quad(\mathbf{f l i p}=+\mathbf{3 9 6})
$$

2. Calculate the heat of reaction for the following reaction.

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

The following is known.

$$
\begin{array}{ll}
\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=67.7 \mathrm{~kJ} \\
\mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \underline{\mathrm{O}}_{4}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=9.7 \mathrm{~kJ} \\
\mathbf{2} \mathbf{N O}_{2}(\mathbf{g}) \rightarrow \mathbf{N}_{2} \mathbf{O}_{4}(\mathbf{g}) & \Delta \mathbf{H}^{\circ}=\mathbf{- 5 8 . 0} \mathrm{kJ}
\end{array}
$$

3. Calculate the heat of reaction for the following reaction:

$$
\mathrm{NO}(\mathrm{~g})+\mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})
$$

The following is known.

$$
\begin{array}{lll}
2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-427 \mathrm{~kJ} & (\text { (flip and } 1 / 2=+\mathbf{2 1 3 . 5} \mathbf{~ k J}) \\
\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=495 \mathrm{~kJ} & \text { (flip and } 1 / 2=+\mathbf{2 4 7 . 5} \mathbf{~ k J}) \\
\mathrm{NO}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-199 \mathrm{~kJ} & \text { (keep the same) }
\end{array}
$$

$$
\mathrm{NO}(\mathrm{~g})+\mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-\mathbf{2 3 3} \mathrm{kJ}
$$

4. Calculate the heat of reaction for the following reaction:

$$
\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The following is known.

$$
\begin{array}{lll}
\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=177.4 \mathrm{~kJ} & \text { (keep the same) } \\
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) & \Delta \mathrm{H}^{\circ}=-191.2 \mathrm{~kJ} & (\text { flip }=+\mathbf{1 9 1 . 2} \mathbf{~ k J}) \\
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-241.8 \mathrm{~kJ} & (\text { double }=-\mathbf{4 8 3 . 6} \mathrm{kJ}) \\
\underline{\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})} & \Delta \mathrm{H}^{\circ}=-43.8 \mathrm{~kJ} & (\text { double }=\mathbf{- 8 7 . 6} \mathbf{~ k J}) \\
\mathbf{C}_{6} \mathbf{H}_{4}(\mathbf{O H})_{2}(\mathbf{a q})+\mathbf{H}_{2} \mathrm{O}_{2}(\mathbf{a q}) \rightarrow \mathbf{C}_{6} \mathbf{H}_{4} \mathrm{O}_{2}(\mathbf{a q})+\mathbf{2} \mathbf{H}_{2} \mathbf{O}(\mathbf{l}) & \Delta \mathbf{H}^{\circ}=\mathbf{- 2 0 2 . 6} \mathbf{~ k J}
\end{array}
$$

5. Calculate the heat of reaction for the following reaction:

$$
\mathrm{Ca}(\mathrm{~s})+\mathrm{C}(\mathrm{~s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})
$$

The following is known.

$$
\begin{array}{lll}
\mathrm{Ca}(\mathrm{~s})+2 \mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{CaC}_{2}(\mathrm{~s}) & \Delta \mathrm{H}^{\circ}=-62.8 \mathrm{~kJ} & \text { (keep the same) } \\
\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=393.5 \mathrm{~kJ} & \text { (keep the same) } \\
\mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaC}_{2}(\mathrm{~s})+5 / 2 \mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=1538 \mathrm{~kJ} & (\text { flip }=\mathbf{- 1 5 3 8} \mathbf{k J}) \\
\mathbf{C a}(\mathbf{s})+\mathbf{C}(\mathbf{s})+\mathbf{3} / \mathbf{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathbf{C a C O} \mathbf{3}(\mathbf{s}) & \Delta \mathbf{H}^{\circ}=\mathbf{- 1 2 0 7} \mathbf{~ k J} &
\end{array}
$$

6. Calculate the heat of reaction for the following reaction:

$$
2 \mathrm{P}(\mathrm{~s})+5 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{PCl}_{5}(\mathrm{~s})
$$

The following is known.

$\mathrm{PCl}_{5}(\mathrm{~s}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$	$\Delta \mathrm{H}^{\circ}=87.9 \mathrm{~kJ}$	$($ flip and $\mathbf{x} \mathbf{2}=\mathbf{- 1 7 5 . 8} \mathbf{k J})$
$\mathbf{2 P (s) + 3 \mathrm { Cl } _ { 2 } (\mathrm { g }) \rightarrow 2 \mathrm { PCl } _ { 3 } (\mathrm { g })}$	$\Delta \mathrm{H}^{\circ}=-574 \mathrm{~kJ}$	(keep the same)
$\mathbf{2 P (s) + 5 \mathbf { C l } _ { 2 } (\mathrm { g }) \rightarrow \mathbf { 2 P C l } \mathbf { 5 } (\mathrm { g })}$	$\Delta \mathbf{H}^{\circ}=\mathbf{- 7 5 0 . \mathbf { k J }}$	

7. Use the information in the table to calculate the enthalpy of this reaction.
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Reaction	$\Delta \mathbf{H}_{\mathbf{f}}{ }^{\circ}, \mathbf{k J} \cdot \mathbf{m o l}^{\mathbf{- 1}}$	What I did
$2 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	-84.7	Flip the reaction
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$	-393.5	$\mathbf{x 2}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.8	$\mathbf{x 3}$

(A) -764 kJ
(B) $\mathbf{- 1 5 6 0} \mathbf{k J}$
(C) -1664 kJ
(D) -3120 kJ
(E) -595 kJ
8. Given these reactions:

$\mathrm{A} \rightarrow 2 \mathrm{~B}$	$\Delta \mathrm{H}^{\circ}=40 \mathrm{~kJ}$	(keep the same $=\mathbf{4 0}$)
$\mathrm{B} \rightarrow \mathrm{C}$	$\Delta \mathrm{H}^{\circ}=-50 \mathrm{~kJ}$	(multiply by $\mathbf{2}=\mathbf{- 1 0 0})$
$2 \mathrm{C} \rightarrow \mathrm{D}$	$\Delta \mathrm{H}^{\circ}=-20 \mathrm{~kJ}$	(flip the reaction $=+\mathbf{2 0}$)

Calculate $\Delta \mathrm{H}$ for the reaction; $\mathrm{D}+\mathrm{A} \rightarrow 4 \mathrm{C}$.
(A) -100 kJ
(B) -60 kJ
(C) -40 kJ
(D) 100 kJ
(E) -30 kJ
9. $\quad \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}^{\circ}=-1427.7 \mathrm{~kJ}$

If the enthalpy of vaporization for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is $44.0 \mathrm{~kJ} / \mathrm{mol}$, what is $\Delta \mathrm{H}^{\circ}$ for this reaction if $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is formed instead of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$?
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta \mathrm{H}^{\circ}=44.0 \mathrm{~kJ}$ (flip and multiply by $\mathbf{3}=\mathbf{- 1 3 2 . 0} \mathbf{~ k J}$)
(A) -1295.7 kJ
(B) -1383.7 kJ
(C) -1471.7 kJ
(D) -1559.7 kJ
(E) -1515.7 kJ
10. Given the thermochemical equations:

$$
\begin{array}{cll}
\mathrm{Br}_{2}(\mathrm{l})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrF}^{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-188 \mathrm{~kJ} & \text { (flip and divide by 2 = +94 kJ) } \\
\mathrm{Br}_{2}(\mathrm{l})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrF}_{3}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-768 \mathrm{~kJ} & \text { (divide by 2 = -384 kJ }) \\
\text { Determine } \Delta \mathrm{H}^{\circ} \text { for the reaction: } \mathrm{BrF}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{BrF}_{3}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=\text { ? }
\end{array}
$$

(A) -956 kJ
(B) -580 kJ
(C) $\mathbf{- 2 9 0} \mathbf{k J}$
(D) -478 kJ
(E) 580 kJ
11. Given these two standard enthalpies of formation:

Reaction 1: $\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-295 \mathrm{~kJ} / \mathrm{mole} \quad$ (flip and multiply by $2=+\mathbf{5 9 0} \mathbf{k J}$)
Reaction 2: $\mathrm{S}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-395 \mathrm{~kJ} /$ mole \quad (multiply by $2=\mathbf{- 7 9 0} \mathbf{~ k J}$)
What is the heat of reaction for $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$ under the same conditions?
(A) $-1380 \mathrm{~kJ} / \mathrm{mole}$
(B) $-690 . \mathrm{kJ} / \mathrm{mole}$
(C) $-295 \mathrm{~kJ} /$ mole
(D) -200. kJ/mole
(E) $-100 . \mathrm{kJ} / \mathrm{mole}$
12. Given the following information:

Reaction 1: $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Reaction 2: $\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$
Reaction 3: $2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g})$

$\Delta \mathrm{H}^{\circ}=-286 \mathrm{~kJ}$	(flip)
$\Delta \mathrm{H}^{\circ}=394 \mathrm{~kJ}$	(multiply by 2)
$\Delta \mathrm{H}^{\circ}=1300 \mathrm{~kJ}$	(flip)

Find $\Delta \mathrm{H}^{\circ}$ for the reaction: $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{C}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})$
(A) $\mathbf{- 2 2 6} \mathrm{kJ}$
(B) -113 kJ
(C) 113 kJ
(D) 226 kJ
(E) 452 kJ

Additional Practice Problems

1. Calculate the $\Delta \mathrm{H}^{\circ}$ the following problems using Hess's law.

$$
\begin{array}{lll}
\text { Given: } & \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2} & \Delta \mathrm{H}^{\circ}=-23 \mathrm{~kJ} \\
& 3 \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \rightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO}_{2} & \Delta \mathrm{H}^{\circ}=-39 \mathrm{~kJ} \\
& \underline{\mathrm{Fe}}_{3} \underline{\mathrm{O}}_{4}+\mathrm{CO} \rightarrow 3 \mathrm{FeO}+\mathrm{CO}_{2} & \Delta \mathrm{H}^{\circ}=+18 \mathrm{~kJ}
\end{array}
$$

(divide by 2)
(flip and divide by 6)
(flip and divide by 3)
2. Calculate the $\Delta \mathrm{H}^{\circ}$ the following problems using Hess's law.

Given:	$\mathrm{P}_{4}+6 \mathrm{Cl}_{2} \rightarrow 4 \mathrm{PCl}_{3}$	$\Delta \mathrm{H}^{\circ}=-1225.6 \mathrm{~kJ}$
	$\mathrm{P}_{4}+5 \mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}$	$\Delta \mathrm{H}^{\circ}=-2967.3 \mathrm{~kJ}$
	$\mathrm{PCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{PCl}_{5}$	$\Delta \mathrm{H}^{\circ}=-84.2 \mathrm{~kJ}$
	$\mathrm{PCl}_{3}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{Cl}_{3} \underline{\mathrm{PO}}$	$\Delta \mathrm{H}^{\circ}=-285.7 \mathrm{~kJ}$
Find:	$\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{PCl}_{5} \rightarrow 10 \mathrm{Cl}_{3} \mathrm{PO}$	$\Delta \mathbf{H}^{\circ}=\mathbf{- 6 1 0 . 1} \mathbf{k J}$

(keep the reaction as is) (flip the reaction) (flip and multiply by 6) (multiply by 10)
3. Calculate the $\Delta \mathrm{H}^{\circ}$ the following problems using Hess's law.

Given:	$\mathrm{Sr}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SrO}$	$\Delta \mathrm{H}^{\circ}=-592 \mathrm{~kJ}$
	$\mathrm{SrO}+\mathrm{CO}_{2} \rightarrow \mathrm{SrCO}_{3}$	$\Delta \mathrm{H}^{\circ}=-234 \mathrm{~kJ}$
	$\underline{\mathrm{C}+\mathrm{O}_{2}} \operatorname{CO}_{2}$	$\Delta \mathrm{H}^{\circ}=-394 \mathrm{~kJ}$
Find:	$\mathrm{Sr}+\mathrm{C}+3 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SrCO}_{3}$	$\Delta \mathbf{H}^{\circ}=\mathbf{- 1 2 2 0 .} \mathbf{k J}$

(keep the reaction as is)
(keep the reaction as is)
(keep the reaction as is)

