Hess's Law Answers		
1. What is heat of reaction for the following reaction	n?	
$C_{\text{graphite}}(s) \rightarrow C_{\text{diamond}}(s)$		
The following is known.		
$C_{graphite}(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta H^{\circ} = -394 \text{ kJ}$	
$\underline{C}_{\text{diamond}}(s) + \underline{O}_2(g) \rightarrow \underline{CO}_2(g)$	$\Delta H^{\circ} = -396 \text{ kJ}$	(flip = +396)
$C_{\text{graphite}}(s) \rightarrow C_{\text{diamond}}(s)$	$\Delta \mathbf{H}^{\circ} = 2 \mathbf{k} \mathbf{J}$	
2. Calculate the heat of reaction for the following re-	eaction.	
$2NO_2(g) \rightarrow N_2O_4(g)$		
The following is known.		
$N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$	$\Delta H^{\circ} = 67.7 \text{ kJ}$	(flip = -67.7 kJ)
$\underline{N_2(g) + 2O_2(g) \rightarrow N_2O_4(g)}$	$\Delta H^{\circ} = 9.7 \text{ kJ}$	
$2NO_2(g) \rightarrow N_2O_4(g)$	$\Delta \mathbf{H}^{\circ} = -58.0 \text{ kJ}$	
3. Calculate the heat of reaction for the following re-	eaction:	
$NO(g) + O(g) \rightarrow NO_2(g)$		
The following is known.		
$2O_3(g) \rightarrow 3O_2(g)$	$\Delta H^{\circ} = -427 \text{ kJ}$	(flip and $\frac{1}{2} = +213.5 \text{ kJ}$)
$O_2(g) \rightarrow 2O(g)$	$\Delta H^{\circ} = 495 \text{ kJ}$	(flip and $\frac{1}{2} = +247.5 \text{ kJ}$)
$NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$) $\Delta H^{\circ} = -199 \text{ kJ}$	(keep the same)
$NO(g) + O(g) \rightarrow NO_2(g)$	$\Delta \mathbf{H}^{\circ} = -233 \text{ kJ}$	
4. Calculate the heat of reaction for the following re-	eaction:	
$C_6H_4(OH)_2(aq) + H_2O_2(aq) \rightarrow C_6$		
The following is known.		
$C_6H_4(OH)_2(aq) \rightarrow C_6H_4O_2(aq) +$	$H_2(g) \qquad \Delta H^\circ = 177.4 \text{ kJ}$	(keep the same)
$H_2(g) + O_2(g) \rightarrow H_2O_2(aq)$	$\Delta H^{\circ} = -191.2 \text{ kJ}$	—
$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$	$\Delta H^{\circ} = -241.8 \text{ kJ}$	
$\frac{H_2(g) \rightarrow H_2(g)}{H_2(g)} \rightarrow H_2(g)$	$\Delta H^{\circ} = -43.8 \text{ kJ}$	(double = -87.6 kJ)
$C_{6}H_{4}(OH)_{2}(aq) + H_{2}O_{2}(aq) \rightarrow O$	$\Delta \mathbf{H}^{\circ} = -202.6 \text{ kJ}$	
5. Calculate the heat of reaction for the following re-	eaction.	
$Ca(s) + C(s) + 3/2O_2(g) \rightarrow CaCC$		
The following is known.		
$Ca(s) + 2C(s) \rightarrow CaC_2(s)$	$\Delta H^{\circ} = -62.8 \text{ kJ}$	(keep the same)
$CO_2(g) \rightarrow C(s) + O_2(g)$	$\Delta H^{\circ} = 393.5 \text{ kJ}$	
$\underline{\operatorname{CaCO}}_{3}(s) + \underline{\operatorname{CO}}_{2}(g) \underline{\operatorname{CaC}}_{2}(s) +$		(flip = -1538 kJ)
$\overline{\operatorname{Ca}(s) + \operatorname{C}(s) + 3/2\operatorname{O}_2(g)} \rightarrow \operatorname{CaCe}$		(r
6. Calculate the heat of reaction for the following r	reaction:	
$2P(s) + 5Cl_2(g) \rightarrow 2PCl_5(s)$		
The following is known.		
$PCl_5(s) \rightarrow PCl_3(g) + Cl_2(g)$ $\Delta H^\circ =$		(flip and x2 = -175.8 kJ)
$\underline{2P(s) + 3Cl_2(g)} \rightarrow \underline{2PCl_3(g)}$	$\Delta H^{\circ} = -574 \text{ kJ}$	(keep the same)
$2P(s) + 5Cl_2(g) \rightarrow 2PCl_5(g)$	$\Delta \mathbf{H}^{\circ} = -750. \text{ kJ}$	
7. Use the information in the table to calculate the	enthalpy of this reaction.	
$C_2H_6(g)$ + 7/2 $O_2(g)$ → 2 $CO_2(g)$ + 3 $H_2O(l)$	± •	

$\frac{C_2 H_6(g) + 1/2 O_2(g) + 2CO_2(g) + 3H_2}{Reaction}$	$\Delta \mathbf{H}_{\mathbf{f}}^{\circ}$, kJ·mol ⁻¹	What I did	
$2C(s) + 3H_2(g) \rightarrow C_2H_6(g)$	-84.7	Flip the reaction	
$C(s) + O_2(g) \rightarrow CO_2(g)$	-393.5	x2	
$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(l)$	-285.8	x3	
(A) –764 kJ (B) –1560 kJ	(C) –1664 kJ (D) –3120 kJ	(E)

Name_____

8. Given these reactions: $\Delta H^{\circ} = 40 \text{ kJ}$ $A \rightarrow 2B$ (keep the same = 40) $B \rightarrow C$ (multiply by 2 = -100) $\Delta H^{\circ} = -50 \text{ kJ}$ $2C \rightarrow D$ $\Delta H^{\circ} = -20 \text{ kJ}$ (flip the reaction = +20) Calculate ΔH for the reaction: D + A \rightarrow 4C. (A) –100 kJ (B) - 60 kJ(C) - 40 kJ(D) 100 kJ (E) -30 kJ $C_2H_6(g) + 7/2O_2(g) \rightarrow 2CO_2(g) + 3H_2O(g)$ $\Delta H^{\circ} = -1427.7 \text{ kJ}$ 9 If the enthalpy of vaporization for H₂O(l) is 44.0 kJ/mol, what is Δ H° for this reaction if H₂O(l) is formed instead of H₂O(g)? H₂O(l) \rightarrow H₂O(g) Δ H^o = 44.0 kJ (flip and multiply by 3 = -132.0 kJ) (A) -1295.7 kJ (B) -1383.7 kJ (C) -1471.7 kJ (D) -1559.7 kJ (E) -1515.7 kJ 10. Given the thermochemical equations: $\Delta H^{\circ} = -188 \text{ kJ}$ (flip and divide by 2 = +94 kJ) $Br_2(l) + F_2(g) \rightarrow 2BrF(g)$ $Br_2(1) + 3F_2(g) \rightarrow 2BrF_3(g)$ (divide by 2 = -384 kJ) $\Delta H^{\circ} = -768 \text{ kJ}$ Determine ΔH° for the reaction: BrF(g) + F₂(g) \rightarrow BrF₃(g) $\Delta H^{\circ} = ?$ (B) -580 kJ (C) -290 kJ (D) -478 kJ (A) -956 kJ (E) 580 kJ 11. Given these two standard enthalpies of formation: Reaction 1: $S(s) + O_2(g) \rightleftharpoons SO_2(g)$ $\Delta H^{\circ} = -295 \text{ kJ/mole}$ (flip and multiply by 2 = +590 kJ) Reaction 2: $S(s) + \frac{3}{2}O_2(g) \rightleftharpoons SO_3(g) \qquad \Delta H^\circ = -395 \text{ kJ/mole}$ (multiply by 2 = -790 kJ) What is the heat of reaction for $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ under the same conditions? (A) -1380 kJ/mole (B) -690. kJ/mole (C) -295 kJ/mole (D) -200. kJ/mole (E) -100. kJ/mole 12. Given the following information: Reaction 1: $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(1)$ $\Delta H^{\circ} = -286 \text{ kJ}$ (flip) Reaction 2: $CO_2(g) \rightarrow C(s) + O_2(g)$ $\Delta H^{\circ} = 394 \text{ kJ}$ (multiply by 2) Reaction 3: $2CO_2(g) + H_2O(l) \rightarrow C_2H_2(g) + \frac{5}{2}O_2(g)$ $\Delta H^{\circ} = 1300 \text{ kJ}$ (flip) Find ΔH° for the reaction: $C_2H_2(g) \rightarrow 2C(s) + H_2(g)$ (A) -226 kJ (D) 226 kJ (E) 452 kJ (B) -113 kJ (C) 113 kJ **Additional Practice Problems** 1. Calculate the ΔH° the following problems using Hess's law. Given: $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ $\Delta H^{\circ} = -23 \text{ kJ}$ (divide by 2) $\Delta H^{\circ} = -39 \text{ kJ}$ $3Fe_2O_3 + CO \rightarrow 2Fe_3O_4 + CO_2$ (flip and divide by 6) <u>Fe₃O₄ + CO \rightarrow 3FeO + CO₂</u> $\Delta H^{\circ} = +18 \text{ kJ}$ (flip and divide by 3) Find: FeO + CO \rightarrow Fe + CO₂ $\Delta H^{\circ} = -11 \text{ kJ}$ 2. Calculate the ΔH° the following problems using Hess's law. Given: $P_4 + 6Cl_2 \rightarrow 4PCl_3$ $\Delta H^{\circ} = -1225.6 \text{ kJ}$ (keep the reaction as is) $P_4 + 5O_2 \rightarrow P_4O_{10}$ $\Delta H^{\circ} = -2967.3 \text{ kJ}$ (flip the reaction) $PCl_3 + Cl_2 \rightarrow PCl_5$ $\Delta H^{\circ} = -84.2 \text{ kJ}$ (flip and multiply by 6) $PCl_3 + \frac{1}{2}O_2 \rightarrow Cl_3PO$ $\Delta H^{\circ} = -285.7 \text{ kJ}$ (multiply by 10) P_4O_{10} + 6PCl₅ → 10Cl₃PO Find: $\Delta H^{\circ} = -610.1 \text{ kJ}$ 3. Calculate the ΔH° the following problems using Hess's law. (keep the reaction as is) Given: $Sr + \frac{1}{2}O_2 \rightarrow SrO$ $\Delta H^{\circ} = -592 \text{ kJ}$ $\Delta H^{\circ} = -234 \text{ kJ}$ $SrO + CO_2 \rightarrow SrCO_3$ (keep the reaction as is) $C + O_2 \rightarrow CO_2$ $\Delta H^{\circ} = -394 \text{ kJ}$ (keep the reaction as is) $Sr + C + 3/2 O_2 \rightarrow SrCO_3$ $\Delta H^{\circ} = -1220. \text{ kJ}$ Find: