Energy Stoichiometry Answers

1. Calculate the amount of heat absorbed when 5.66 grams of carbon disulfide form from the synthesis of $\mathrm{C}(\mathrm{s})$ and $\mathrm{S}(\mathrm{s})$.

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{~S}(\mathrm{~s}) \rightarrow \mathrm{CS}_{2}(\mathrm{l}) \quad \Delta \mathrm{H}^{\circ}=+89.3 \mathrm{~kJ}
$$

2. How many grams of methane $\left(\mathrm{CH}_{4}\right)$ are needed to produce 2100 . kJ of energy?

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}^{\circ}=-890.4 \mathrm{~kJ}
$$

$\underline{-2100 .} \mathrm{kJ}=\underline{-890.4 \mathrm{~kJ}}$
 $x \quad 16.05$ grams CH_{4}

$=37.85$ grams CH_{4}
3. How much heat is given off when 1106 grams of phosphorus trichloride are formed?

$$
2 \mathrm{P}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{PCl}_{3} \quad \Delta \mathrm{H}^{\circ}=-574 \mathrm{~kJ}
$$

$\underline{1106 \operatorname{grams~PCl}_{3}}=\underline{274.64 \mathrm{grams} \mathrm{PCl}_{3}} \quad=-2311.5 \rightarrow-2310 \mathrm{~kJ}$
4. How many grams of magnesium oxide are produced when 350 kJ of energy is released?

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s}) \quad \Delta \mathrm{H}^{\circ}=-1204 \mathrm{~kJ}
$$

$\frac{\mathbf{- 3 5 0} \mathrm{kJ}}{\mathrm{x}}=\frac{\mathbf{- 1 2 0 4} \mathrm{kJ}}{80.60 \text { grams MgO }} \quad=23.43 \rightarrow 23$ grams MgO
5. How much energy is required to break down 300.0 grams of phosphorus pentachloride?

$\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2} \mathrm{PCl}_{\mathbf{5}}$
$\frac{\mathbf{3 0 0 . 0} \text { grams } \mathrm{PCl}_{\mathbf{5}}}{\mathbf{x}}=\frac{\mathbf{2 0 8 . 2 2} \text { grams } \mathrm{PCl}^{\circ}=-87.9 \mathrm{~kJ}}{\mathbf{- 8 7 . 9} \mathbf{~ k J}}$

6. How many grams of water vapor are released in the production of 3000 . kilocalories of energy?

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}^{\circ}=-484 \mathrm{~kJ}
$$

3000 kcal $\times 4.184=12552 \mathrm{~kJ}$

$\underline{-12552 \mathrm{~kJ}}=-\underline{-484 \mathrm{~kJ}}$
 $x \quad 36.04$ grams $\mathrm{H}_{2} \mathrm{O}$

$=935$ grams $\mathrm{H}_{2} \mathrm{O}$
7. How much energy is released in the break down of 999 grams of iron(III) oxide?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2} \quad \Delta \mathrm{H}^{\circ}=-26.3 \mathrm{~kJ}
$$

$\underline{999}$ grams $\mathrm{Fe}_{2} \underline{\mathrm{O}}_{\mathbf{3}}=159.7{\text { grams } \mathrm{Fe}_{2} \mathrm{O}_{3}}_{150}=-164.5=-165 \mathrm{~kJ}$

```
    x -26.3 kJ
```

8. A mountain climber, wanting a drink of water, must melt the snow from the mountain with a propane burner. How many grams of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ would the mountain climber have to use to generate the 55.5 kJ of energy?

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+3 \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-2220 \mathrm{~kJ}
$$

$\underline{-55.5 \mathrm{~kJ}}=\underline{-2220 \mathrm{~kJ}} \quad=1.10 \mathrm{grams}_{\mathrm{C} 3} \mathrm{H}_{8}$
 $x \quad 44.11$ grams $\mathrm{C}_{3} \mathrm{H}_{8}$

9. How many kJ of energy are needed to produce 2.0 kilograms of glucose?

$$
6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+6 \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=2870 \mathrm{~kJ}
$$

2.0 kilograms $\times 1000=2.0 \times 10^{\mathbf{3}}$ grams

10. How many kJ of energy are released when 560 . liters of sulfur dioxide react with excess oxygen at STP?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-197.8 \mathrm{~kJ}
$$

$\underline{560}$ liters $\mathrm{SO}_{2}=\underline{44.8 \text { liters } \mathrm{SO}_{2}}$
 $x \quad-197.8 \mathrm{~kJ}$

$$
=-2472.5=-2470 \mathrm{~kJ}
$$

1. Calculate the amount of heat absorbed when 5.66 grams of carbon disulfide form from the synthesis of $C(s)$ and $S(s)$.

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{~S}(\mathrm{~s}) \rightarrow \mathrm{CS}_{2}(\mathrm{l}) \quad \Delta \mathrm{H}=+89.3 \mathrm{~kJ}
$$

$\frac{5.66 \text { grams } \mathrm{CS}_{2}}{1} \times \frac{1 \mathrm{~mole} \mathrm{CS}_{2}}{76.2 \text { grams CS }_{2}} \times \frac{89.3 \mathrm{~kJ}}{1 \text { mole CS }} \mathbf{2}=6.63 \mathrm{~kJ}$
2. How many grams of methane $\left(\mathrm{CH}_{4}\right)$ are needed to produce 2100 kJ of energy?

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta \mathrm{H}=-890.4 \mathrm{~kJ}
$$

$\underline{2100 \mathrm{~kJ}} \times \underline{1 \text { mole } \mathrm{CH}_{4}} \times \underline{16.0 \text { grams } \mathrm{CH}_{4}}=37.7 \rightarrow 38$ grams CH_{4}
 $1 \quad-890.4 \mathrm{~kJ} \quad 1$ mole CH4

3. How much heat is given off when 1106 grams of phosphorus trichloride are formed?

$$
2 \mathrm{P}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{PCl}_{3} \Delta \mathrm{H}=-574 \mathrm{~kJ}
$$

$\frac{1106 \text { grams } \mathrm{PCl}_{3}}{1} \times \frac{1 \mathrm{~mole}_{\mathrm{PCl}}^{3}}{} \times \frac{-574 \mathrm{~kJ}}{137.2 \text { grams } \mathrm{PCl}_{3}}=-2313.6=-2310 \mathrm{~kJ}$
4. How many grams of magnesium oxide are produced when 350 kJ of energy is released?

$$
2 \mathrm{Mg}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{~s}) \Delta \mathrm{H}=-1204 \mathrm{~kJ}
$$

$\underline{\mathbf{3 5 0} \mathrm{kJ}} \times \underline{2 \text { moles } \mathbf{M g O}} \times \underline{\mathbf{4 0 . 3} \text { grams } \mathbf{~ M g O}}=23.4 \rightarrow 23$ grams MgO
 $-1204 \mathrm{~kJ} \quad 1$ mole MgO

5. How much energy is required to break down 300.0 grams of phosphorus pentachloride?

$$
\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2} \quad \Delta \mathrm{H}=-87.9 \mathrm{~kJ}
$$

$\frac{300.0 \text { grams } \mathrm{PCl}_{5}}{1} \times \frac{1 \text { mole } \mathrm{PCl}_{5}}{208.5 \text { grams } \mathrm{PCl}_{5}} \times \frac{-87.9 \mathrm{~kJ}}{1 \text { mole } \mathrm{PCl}_{5}}=-126.47=-126 \mathrm{~kJ}$
6. How many liters of water vapor are released in the production of 3000 . kilocalories of energy?

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-572 \mathrm{~kJ}
$$

3000 kcal x $4.184=12552 \mathrm{~kJ}$

$\underline{12552 \mathrm{~kJ}} \times \underline{2}$ moles $\mathrm{H}_{2} \mathrm{O} \times 22.4$ liters $\mathrm{H}_{2} \mathrm{O}=983$ liters $\mathrm{H}_{2} \mathrm{O}$
 $1 \quad-572 \mathrm{~kJ} \quad 1$ mole $\mathrm{H}_{2} \mathrm{O}$

7. How much energy is released in the break down of 999 grams of iron(III) oxide?

8. A mountain climber, wanting a drink of water, must melt the snow from the mountain with a propane burner. How many grams of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ would the mountain climber have to use to generate the 55.5 kJ of energy?

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+3 \mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-2220 \mathrm{~kJ}
$$

$55.5 \mathrm{~kJ} \times \underline{1 \text { mole } \mathrm{C}_{3} \mathrm{H}_{8}} \times \underline{44.0 \text { grams } \mathrm{C}_{3} \mathrm{H}_{8}}=1.10$ grams $\mathrm{C}_{3} \mathrm{H}_{8}$ $1 \quad 2220 \mathrm{~kJ} \quad 1$ mole $\mathrm{C}_{3} \mathrm{H}_{8}$

9. How many kJ of energy are needed to produce 2.0 kilograms of glucose?

$$
6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+6 \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=2870 \mathrm{~kJ}
$$

2.0 kilograms $\times 1000=2.0 \times 10^{3}$ grams $\leftarrow 3 / 25 / 2009$ Elisha Johnson

10. How many kJ of energy are released when 560 liters of sulfur dioxide react with excess oxygen?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}=-197.8 \mathrm{~kJ}
$$

$\frac{560 \text { liters } \mathrm{SO}_{2}}{1} \times \frac{1 \mathrm{~mole} \mathrm{SO}_{2}}{22.4 \text { liters } \mathrm{SO}_{2}} \times \frac{-197.8 \mathrm{~kJ}}{2 \text { mole } \mathrm{SO}_{2}}=-2472.5=-2500 \mathrm{~kJ}$

