Name \qquad Honors Chemistry \qquad

Heat of Solution \& Calorimetry

Demo 1. I will pour 100. g of $\mathrm{H}_{2} \mathrm{O}$ into a Styrofoam coffee cup calorimeter. Record the initial temperature. Add approximately 10 . grams of calcium chloride to the water. Record the final temperature. Identify which substance is endothermic and which substance is exothermic.

Initial Temperature: \qquad Final Temperature: \qquad
$\mathrm{H}_{2} \mathrm{O}$ mass: \qquad CaCl_{2} mass: \qquad

Total mass: \qquad CaCl_{2} moles: \qquad
Endothermic \qquad Exothermic: \qquad
Determine the heat flow using the formula: $q=(m C \Delta T)_{\text {solution }}$

Determine the heat of solution in $\mathrm{kJ} / \mathrm{mol}$ using the formula: $\Delta \mathrm{H}_{\text {solution }}=\frac{\mathrm{q}}{\text { moles of salt }}$

Demo 2. I will pour 100. grams of $\mathrm{H}_{2} \mathrm{O}$ into a Styrofoam coffee cup calorimeter. Record the initial temperature. Add approximately 10 . grams of sodium nitrate to the water.

Initial Temperature: \qquad
$\mathrm{H}_{2} \mathrm{O}$ mass: \qquad
Total mass: \qquad
Endothermic \qquad

Final Temperature: \qquad
NaNO_{3} mass: \qquad
NaNO_{3} moles: \qquad
Exothermic: \qquad

Determine the heat flow using the formula: $\mathrm{q}=(\mathrm{mC} \mathrm{\Delta T})_{\text {solution }}$

Determine the heat of solution in $\mathrm{kJ} / \mathrm{mol}$ using the formula: $\Delta \mathrm{H}_{\text {solution }}=\frac{\mathrm{q}}{\text { moles of salt }}$

Demo 3: Determine the specific heat capacity of a rock.
Initial Temperature Rock: \qquad Initial Temperature Water: \qquad
Final Temperature: \qquad
\qquad Mass of Rock: \qquad
Endothermic: \qquad Exothermic: \qquad
Use the formula $(\mathbf{m C} \Delta \mathbf{T})_{\text {water }}=-(\mathbf{m C} \Delta \mathbf{T})_{\text {rock }}$ to determine the specific heat capacity of the rock:

Solve each of the following calorimetry problems.

1. An unknown metal with a mass of 45.68 grams is heated to a constant temperature of $300.0^{\circ} \mathrm{C}$. The object is then submerged in 200.0 grams of water at $22.0^{\circ} \mathrm{C}$. The final temperature of the water is $44.7^{\circ} \mathrm{C}$. The specific heat capacity of water is $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. Determine the specific heat capacity of the unknown substance.

Substance \quad Specific Heat Capacity $\left(\mathrm{J} \cdot \mathrm{g}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}\right)$

Au	0.129
$\mathrm{H}_{2} \mathrm{O}$	4.184

2. A gold ring that weighs 3.81 g is heated to $84.0^{\circ} \mathrm{C}$ and placed in 50.0 g of $\mathrm{H}_{2} \mathrm{O}$ at $22.1^{\circ} \mathrm{C}$. What is the final temperature?
3. A piece of metal weighing 418.4 grams was put into a boiling water bath. After 10 minutes, the metal was immediately placed in 250.0 grams of water at $40.0^{\circ} \mathrm{C}$. The maximum temperature that the system reached was 50.0 ${ }^{\circ} \mathrm{C}$. What is the specific heat of the metal?

Substance	Specific Heat Capacity $\left(\mathrm{J} \cdot \mathrm{g}^{-1} \cdot{ }^{\circ} \mathrm{C}^{-1}\right)$
Al	0.89
$\mathrm{H}_{2} \mathrm{O}$	4.184

4. An aluminum bar that weighs 13.81 g is heated to $250.0^{\circ} \mathrm{C}$ and placed in 120.0 g of $\mathrm{H}_{2} \mathrm{O}$ at $23.9^{\circ} \mathrm{C}$. What is the final temperature?
