Name	Chemi	istry		//
Equilibrium & Acid – Base Test				
Part I: Mass Action Expressions: Write mass	s action expressio	ons for the followi	ng reactions.	
1. $2\text{HBr}(g) \rightleftharpoons H_2(g) + Br_2(g)$				
2. $2SO_3(g) \iff 2SO_2(g) + O_2(g)$				-
3. $PbCl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2Cl^{-}(aq)$				2
4. $Mg(OH)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2OH^{-}(aq)$			_ (
Part II: Calculating Equilibrium: Solve each 1. Calculate the equilibrium constant for the for following concentrations $[NH_3] = 1.1 \text{ M}$, $[O_2] =$	h of the following llowing reaction 4 $= 0.6 \text{ M}, [H_2O] = 0$	4. NH ₃ (g) + 5O ₂ (g) = 0.02 M and [NO] =	$6H_2O(g) + 0.012 M.$	4NO(g) given the
K _{eq} =				
2. Calculate the concentration of OH ⁻ if the equ [OH ⁻] = [NH ₃ OH ⁺] $K_{eq} = 1.1 \times 10^{-8}$ NH	ilibrium concentra $H_2OH (aq) + H_2O$	ation of NH_2OH in (1) $\rightleftharpoons NH_3OH^+$ (water is 2.55 M (aq) + OH ⁻ (aq)	1.
[OH ⁻] =				
3. What is the concentration of Ca^{2+} in a saturat $CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$	ted solution of Ca	F_2 if [F] is 2.2 x 10	$0^{-3}? K_{sp} = 5.3 x$	10 ⁻⁹
[Ca ²⁺] =	()			
Part III: Le Chatelier's Principle Complete the following chart by writing LEFT, DECREASES or STAYS THE SAME for the c N ₂ (g)	RIGHT or NONI oncentrations of t + $3H_2(g) \Longrightarrow 2N$	E for the equilibriu he reactants, produ NH3(g) + 92.0 kJ	m shift and INC	CREASES, value of K.
Stress Equilibrium Shift	[N ₂]	[H ₂]	[NH ₃]	K
1. Add N ₂				
2. Add NH ₃				

Part IV: Name the following acids and identify them as binary or ternary.

3. Remove H₂

4. Increase Temperature

5. Decrease Pressure

1. HI	
2. H ₂ SO ₃	
3. H ₃ PO ₄	
4. HClO ₃	

Part V: Write the formula for each of the following and identify it as monoprotic, diprotic or triprotic.

1. sulfuric acid
2. hydroiodic acid
3. phosphorous acid
4. hydrochloric acid
Part VI: Identify the ACID (A), BASE (B), CONJUGATE ACID (CA) and CONJUGATE BASE (CB) in each of the following equations.
1. $NH_3 + H_2O \rightleftharpoons NH_4^{1+} + OH^{1-}$ 2. $HC1 + H_2O \rightleftharpoons H_3O^{1+} + Cl^{1-}$
3. $H_2SO_4 + H_2O \rightleftharpoons H_3O^{1+} + HSO_4^{1-}$ 4. $HNO_3 + H_2O \rightleftharpoons H_3O^{1+} + NO_3^{1-}$
 Part VII: Calculating the pH/pOH of a strong acid/base. 1. Calculate the pH & pOH of a 0.035 M NaOH solution.
pH = pOH =
2. Calculate the pH & pOH of a $0.15 \text{ M H}_2\text{SO}_4$ solution.
pH = pOH =
Part VIII: Calculating pH/pOH, K _a / K _b , of a Weak Acid/Weak Base 1. Calculate the pH & pOH of a 0.010 M hydrofluoric acid solution. $K_a = 6.8 \times 10^{-4}$
pH = pOH =
2. A 0.30M solution of weak acid has a pH of 4.3. Calculate the K_a of this acid.
K _a =
3. Calculate the pH & pOH of a 0.30 M ammonia solution. $K_b = 1.80 \times 10^{-5}$
pH = pOH =
4. A 0.040 M weak acid has a $[H^+]$ of 3.7 x 10 ⁻³ . Calculate the K _a of this acid.
K _a =

5. A 0.15M solution of weak base has a pH of 9.6. Calculate the K_{b} of this base.

K_b = _____

Part IX: Multiple Choice: Choose the best answer for each of the following.

1	 Which of the following will occur when a solution of a weak acid is diluted? I. The pH of the solution will increase II. The equilibrium constant for the acid will decrease III. The dissociation of the acid will increase 				
	(A) I only	(B) III only	(C) I, II, and III	(D) II and III only	(E) I and III only
2 reduce t	How n the $[Pb^{2+}]$ to 1 x 10	nany moles of Nal D^{-6} molar? (K _{sp} of I	F must be dissolve PbF ₂ at 25° C = 4.0	d in 1.00 liter of a saturated $x \times 10^{-8}$	d solution of PbF_2 at 25°C to
	(A) 0.020 mole	(B) 0.040 mole	(C) 0.10 mole	(D) 0.20 mole	(E) 0.40 mole
3	(A) Less than or	equal to 2.0 (D) Between 7 a	(B) Bet (B) Bet and 11	pH of a 0.01 molar solution ween 2 and 7 (E) Greater than	n of $C_5H_5N_5 (K_b = 1.7 \times 10^{-7})$? (C) 7 or equal to 11
4	HSO4 ⁻ +	$H_2O \rightleftharpoons H_3O^+$	+ SO ₄ ²⁻	ener in stude subistration of the P	llavin 9
In the ed	I. H ₂ O	II. HSO ₄ ⁻	III. SO ₄	²⁻	nowing :
	(A) II only	(B) III only	(C) I and II	(D) I and III (E) II a	nd III
5	(A) H_2SO_4 and I	of the following $\frac{1}{1000}$ HSO ₄ ⁻ (D) H ₂ PO ₄ ⁻ and	is not a conjugate a (B) HC PO ₄ ³⁻	acid-base pair? 'l and Cl ⁻ (E) H ₂ S and HS	(C) NH_3 and NH_2^-
6	(A) 2.5 x 10 ⁻¹¹	s the H ⁺ (aq) conce (B) 2.5×10^{-10}	entration in 0.05 M (C) 5.0 x 10 ⁻¹⁰	4 HCN (aq)? (The K _a for H (D) 5.0 x 10 ⁻⁶	CN is 5.0 x 10 ⁻¹⁰) (E) 5.0 x 10 ⁻⁴
7	A 0.20	-molar solution of	a weak monoprot	ic acid, HA, has a pH of 3.0	00. The ionization $constant(K_a)$ of
uns acic	(A) $5.0 \ge 10^{-7}$	(B) 2.0 x 10 ⁻⁷	(C) 5.0 x 10 ⁻⁶	(D) 5.0 x 10 ⁻³	(E) 2.0 x 10 ⁻³
8	(A) accepts a pro (C) donates a pai	cule or an ion is cloton from water ar of electrons to fo	assified as a Lewi orm a bond (E) has resonanc	s acid if it (B) accepts a pair of elect (D) donates a proton to w e Lewis electron-dot struct	rons to form a bond ater ures
9	The aci	d dissociation con	stant for HClO is 3	$3.0 \ge 10^{-8}$. What is the hydr	rogen ion concentration in 0.12 M
solution	(A) $3.6 \times 10^{-9} \text{ M}$	$I(B) 3.6 \times 10^{-8} M$	$(C) 6.0 \times 10^{-8} M$	(D) $2.0 \times 10^{-5} M$	(E) $6.0 \times 10^{-5} M$
10	(A) HCl	th of the following (B) H ₂ SO ₄	can function as b (C) HSO ₃	oth a Brønsted-Lowry acid (D) SO ₄ ²⁻	and Brønsted-Lowry base? (E) H ⁺
11. solubilit	$\frac{1}{1}$ The so ty of CaF ₂ ?	lubility product, F	K_{sp} , of CaF_2 is 4 x	10^{-11} . Which of the follow	ing expressions is equal to the
	(A) $\sqrt{4x10^{-11}}$	М	(B) $\sqrt{2x10^{-11}}$	М	(C) $\sqrt[3]{4x10^{-11}}$ M
		(D) $^{3}\sqrt{2x10^{-11}}$	М	(E) $\sqrt[3]{1x10^{-11}}$ M	
12 How many moles of calcium fluoride, CaF_2 , must be dissolved in 2.0 L of water at 25°C to form a saturated solution? CaF_2 1.6 x 10^{-10} K _{sp} at 25 °C (A) 2.6 x 10^{-2} mol (B) 1.3 x 10^{-3} mol (C) 6.8 x 10^{-4} mol (D) 3.4 x 10^{-4} mol (E) 1.6 x 10^{-10} mol					

13 The io: $C_{\epsilon}H_{\epsilon}COOH(aq)$	nization of benzoic acid is repr $H^+(aq) + C_e H_5 COO^-(aq)$	resented by this equation		
If a 0.045 M solution of be (A) 7.7 x 10^{-5}	(D) 8.4×10^{-1}	$^{10}_{c}$ 10 ⁻³ , what is the K _a of b 0 ⁻⁵ (E) 2.9 x 10 ⁻⁶	enzoic acid? (C) 3.8×10^{-2}	
14 C_6H_5O	$H(aq) + CN^{-}(aq) \Longrightarrow HCN(aq)$	$(q) + C_6H_5O^-(aq)$	· · · · · · · · · · · · · · · · · · ·	
(A) $C_6H_5OH(aq)$	(D) $C_6H_5O^-(aq)$ (B) $CN^-(aq)$	q) (E) all bases are e	(C) HCN(aq) qual in strength	
15What is (A) $\operatorname{HPO}_4^{2^-}(\operatorname{aq})$	the conjugate base of $H_2PO_4^-$ (B) $H_2O(l)$ (D) $H_3PO_4(aq)$? (E) HPO ₄	(C) $HPO_4^-(aq)$	

Part X: Free Response: Solve each of the following.

1. $\operatorname{NH}_3(aq) + \operatorname{H}_2O(l) \rightleftharpoons \operatorname{NH}_4^+(aq) + \operatorname{OH}^-(aq)$

In aqueous solution, ammonia reacts as represented above. In 0.0180 M NH₃(aq) at 25°C, the hydroxide ion concentration, [OH⁻], is 5.60 x 10⁻⁴ M. In answering the following, assume that temperature is constant at 25°C and that volumes are additive.

(a) Write the equilibrium-constant expression for the reaction represented above.

(b) Determine the pH of $0.0180 M \text{ NH}_3(aq)$.

(c) Determine the value of the base ionization constant, K_b , for $NH_3(aq)$.

2. Answer the following questions regarding the decomposition of arsenic pentafluoride, $AsF_5(g)$.

(a) A 55.8 g sample of $AsF_5(g)$ is introduced into an evacuated 10.5 L container at 105°C. What is the initial molar concentration of $AsF_5(g)$ in the container?

At 105°C, AsF₅(g) decomposes into AsF₃(g) and F₂(g) according to the following chemical equation. AsF₅(g) \rightleftharpoons AsF₃(g) + F₂(g)

(b) In terms of molar concentrations, write the equilibrium-constant expression for the decomposition of $AsF_5(g)$.

(c) When equilibrium is established, 27.7 percent of the original number of moles of $AsF_5(g)$ has decomposed. (i) Calculate the molar concentration of $AsF_5(g)$ at equilibrium.

(ii) Using molar concentrations, calculate the value of the equilibrium constant, K_{eq} , at 105°C.