Name	,	_ Chemistry	//
	ws Review – Practice Test	•	
	ature is doubled, which of the fo	llowing is also doubled? The pressure of the gas (C) The	constant volume is heated until its absolute number of molecules per cm ³ energy of the molecules
2temper	(A) It is equal to 1/3 the total p (B) It depends on the intermole (C) It depends on the relative p (D) It depends on the average	tant, which of the following statements a	isions.
	At this temperature, the vapor property. The partial pressure of O ₂ (g) is (A) 28 mm Hg (B) (C) 133 mm Hg (D) (E) 189 mm Hg	56 mm Hg 161 mm Hg	O ₂ (g)
4(E)	(A) $22.4 L$ (B)	olume of 3.00 mol of gas @ STP? 3 x 22.4 L 3 x 22.4 L x 273 / 760 knowing which gas is involved.	H ₂ O(R) Hg(R) Closed-end Manometer
5 32 torr		ed by the dry gas under these conditions	
6 hydrog	en and the other holds 8.0 grams (A) The volume of the hydrog (B) The number of molecules (C) The density of the hydroge (D) The average kinetic energy	of oxygen. Which of the following state en container is the same as the volume of in the hydrogen container is the same as en sample is less than that of the oxygen	the number of molecules in the oxygen container. sample. as the average kinetic energy of the oxygen molecules.
7 of			erage kinetic energy of neon atoms changes by a factor
	(A) ½ (B) (313/293	(C) 313/293	(D) 2 (E) 4
	essure? the total kinetic energy of the mole e number of collisions per second (E)	ecules d of molecules with the wall The root-mean-square speed of the mole	
		g gases effuses at approximately one-half (B) He (molar mass 4.0 grams)	(C) CO ₂ (molar mass 44 grams)

10		_ A rigid metal tar	nk contains oxyger	gas. Which of the	e following applie	s to the gas in the tank when	
additio		ed at constant tem					
		e of the gas increas					
		e of the gas decrea					
			molecules remains				
			cules remains the				
	(E) The average	e distance between	the gas molecules	increases.			
		_ A sample of an i		from 50.0 °C to 2.	5.0 °C in a sealed	container of constant volume. Which	
	average molecular		rease.				
		between the mole	cules				
	e average speed of		cures				
	(A) I only	(B) II only	(C) III	only	(D) I and III	(E) II and III	
12		_ Equal numbers of	of moles of He(g),	Ar(g), and Ne(g) a	are placed in a glas	ss vessel at room temperature. If the	
vessel l	has a pinhole-size	d leak, which of the	he following will b	e true regarding th	ne relative values	of the partial pressures of the gases	
remain			as mixture has effu				
	$(A) P_{He} < P_{Ne} <$	P_{Ar}	$(B) P_{He} < P_{Ar} < 1$	P_{Ne} (E) $P_{He} = P_{Ar} = 1$	$(C) P_{Ne} < P_{Ar} < C$	P _{He}	
		(D) $P_{Ar} < P_{He} <$	P_{Ne}	$(E) P_{He} = P_{Ar} = 1$	P _{Ne}		
13.		Argon gas initia	ally at 25°C is heat	ed to 50°C in a clo	osed container. W	hich statement is correct?	
			of the argon atoms				
	(B) The averag	ge kinetic energy o	of the argon atoms	doubles.			
	(C) The pressu	re of the gas decre	eases by about 50 p	ercent.			
	(D) The pressu	re of the gas doub	les.				
	(E) The pressur	re of the gas incre	ases by about 8 per	cent.			
14.		100 grams of O	(a) and 100 arom	of Ha(a) ara in sa	anarata aantainara	of equal volume. Both gases are at	
		_ 100 grams of O lowing statements		s of He(g) are in so	eparate containers	of equal volume. Both gases are at	
100 C.		would have the sa					
			of the O_2 molecules	is greater than the	at of the He molec	ules	
			of the He molecules				
					at of the o ₂ more	ares.	
		 (D) There are equal numbers of He molecules and O₂ molecules. (E) The pressure of the He(g) would be greater than that of the O₂(g). 					
15	(A) G		ne following is NO	T an assumption of	of the kinetic theor	y of gases?	
		es are negligibly s					
		es are in constant					
		es don't attract each					
		es undergo elastic		ari riihan maaad fe	a marian of hi	sh musesume to a maxion of law	
	pressure.	es undergo a decre	ease in kinetic ener	gy when passed if	rom a region of m	gh pressure to a region of low	
4.5							
16	re (in grams per li		ollowing would exp	ress the approxim	ate density of cart	oon dioxide gas at 0°C and 2.00 atm	
pressur	(A) 2 g/L	(B) 4 g/L	(C) 6 g/L	(D) 8 g/L	(E) none of the	ahova	
	(A) 2 g/L	(b) + g/L	(C) 0 g/L	(D) 8 g/L	(E) Holle of the	above	
17		_At 25°C, a sample	le of NH3 (molar n	nass 17 grams) eff	uses at the rate of	0.050 mole per minute. Under the	
same c			ases effuses at appr		that rate?		
			(B) He (molar i		(C) CO ₂ (molar	mass 44 grams)	
	(D) C	l ₂ (molar mass 71	grams)	(E) CH ₄ (molar	mass 16 grams)		
18		A sample of 0.01	00 mole of oxyge	n gas is confined a	t 37°C and 0.216	atmosphere. What would be the	
		at 15°C and the sar		- 030 10 1011111104 4	5 0.210	The real of the	
r				(D) 0.233 atm	(E) 0.533 atm		
			` /		• /		

19 A sample of 3.30 grams of an ideal gas at 150.0 °C and 1.25 atmospheres pressure has a volume of 2.00 liters. What is the molar mass of the gas? The gas constant, R, is 0.0821 L atm mol ⁻¹ K ⁻¹). (A) 0.0218 gram/mole (B) 16.2 grams/mole (C) 37.0 grams/mole (E) 71.6 grams/mole
20 A sample of 0.1973 mole of nitrogen gas is confined at 37° C and 0.216 atmosphere. What would be the pressure of this sample at 15° C and the same volume? (A) 0.0876 atm (B) 0.175 atm (C) 0.201 atm (D) 0.233 atm (E) 0.533 atm
Part II: Problems. Solve each of the following. You must show your work to receive any credit.
21Calculate the root mean square velocity of fluorine molecules at 33 °C.
22Carbon monoxide travels at 450. m/s. How fast would a fluorine molecule travel at the same conditions?
Calculate the volume of a balloon at 3.5 atm of pressure and -10. °C if it has a volume of 5.3 liters at STP.
24Calculate the mass of xenon gas if it has a volume of 1.65 liters at a pressure of 700. torr and a temperature of 35 °C.
25If temperature is constant and a gas has a volume of 880. mL at 2.50 atm, what would the volume be if the pressure rose to 5.94 atm?
26 A gas exerts a pressure of 141 kPa at 30.0 °C. Calculate the pressure if the volume remains constant at the temperature rises to 60.0 °C.

27	Calculate the temperature at which a balloon has a volume of 380. mL if it has a volume of 1.50 liters at
419 K.	
	Determine the total pressure if the partial pressure of nitrogen is 333 mm Hg, the partial pressure of chlorine he partial pressure of neon is 111 mm Hg and the partial pressure of carbon dioxide is 565 mm Hg. GIVE YOUR pheres!!!
29	Calculate the volume of 32.0 grams of nitrogen gas at 120. kPa and -10. °C.
30.	A balloon has a volume of 25 liters at 23 psi at standard temperature. If temperature is constant, what is the
volume if the pressur	
31	Calculate the density of xenon at a pressure of 2.5 atm and a temperature of 45 K.
	Mg(s) + 2HCl (aq) \rightarrow H ₂ (g) + MgCl ₂ (aq) e of Hydrogen produced if 3.55 grams of Mg react with excess HCl if the pressure is 1.10 atm and the temperature
is 18.0 °C.	