Name		AP Ch	em		//				
Practice Exam 1 Part 1 - 20 Multiple Choice Question – 20 minutes									
1 a. K_2^+ +	When potassium dichroma $Cr_2O_7^{2-}$ d. $K_2^{2+} + Cr_2O_7^{2-}$	te($K_2Cr_2O_7$) is di b. $2K^+ + Cr_2O_7^{2-}$ e. $2K^+ +$	essolved in water, + $2Cr^{4+} + 7O^{2-}$	it is best represente c. $2K^+ + Cr_2O_7^-$	ed by:				
	Which of the following par	irs of compounds	can be used to ill	ustrate the law of 1	multiple				
proportions? a. KMn0	O ₄ and KOH d. SO ₃ and SO ₂			nd O ₃					
	Which of the following elements forms a polyatomic anion where it has an oxidation number of								
+5? a. Ca	b. S	c. Fe	d. N	e. Cs					
4a. 18	How many electrons does b. 20	a sulfide ion have c. 14	e? d. 16	e. 32					
contain: CN-	When the following half re → CNO-								
a. 2e- on	the right side d. 2H ⁺ on the left				tht side				
6.	The compound that contain	ns 28.6% oxygen	is:						
	I b. CaO			e. Ca(OH) ₂					
7a. Au	Which of the following can b. S ²⁻	nnot be a reducin c. Mn ⁷⁺	g agent? d. Cu ⁺	e. O ²⁻					
8 M calcium hydrox	How many grams of Ca(O kide solution?	H) ₂ (molar mass	= 74.0 g/mol) are	contained in 5.00	$\times 10^2 \text{mL of a } 0.80$				
a. 40 g	b. 60. g	e. 30. g	d. 18 g.	e. none of these					
9 The reaction abov CH ₃ OH?	$CH_3OH(g) + \underline{\hspace{1cm}} O_2(g) \rightarrow$ e represents the oxidation of	$CO_2(g) + $ f methanol. How	H ₂ O(g) w many moles of O	O ₂ are needed to ox	xidize 1 mole of				
a. 3/2 m	oles b. 5/2 moles	c. 2 moles	d. 1/2 moles	e. 1 mole					
	A 450. mL sample of a 0.00 M. What volume of solve L b. 56.3 mL								
11a. 3.5 to	What is the mass ratio of b. 2.3 to 1	iron to oxygen in c. 1 to 3.5	n iron(II) oxide? d. 1 to 2.3	e. 1 to 1.75					
theoretical yield o	When 100 grams of butar f H_2O (in grams) is: $4)(18.02)$ b. $\frac{(58.14)(5)}{(100)(18.02)}$			(8.02) $(100)(5)$	en gas, the 5)(18.02) 3.14)				

13		Exces	s $S_8(s)$ is	heated w	ith a r	netallic ele	ement	until the meta	ll reacts completely. All excess
									en the information that follows,
	ne the mos								
Mass of	f crucible, I f crucible a f crucible ,	ınd lid =	41.00 gr	rams					
	a. CuS		b. Cu ₂ S	}	c. Fe	eS	d. I	Fe_2S_3	e. not enough information
14.		What	ions wou	ld vou fi	nd in s	solution if 1	potassi	ium perchlora	te was dissolved in water?
	a. KCl, C	O_2	b. K ⁺ , C	CIO-, O ²⁻	c. K	Cl, O ²⁻	d. l	K ⁺ , ClO ₄ ⁻	e. K ⁺ , Cl ⁻ , O ²⁻
15			ge the fol			in order of S ₂ Cl ₂			on number of the sulfur atom
	 a. H₂S, S b. SO₃, S c. H₂S, S d. SO₂, S e. S₈, H₂ 	SO ₂ , SC S ₈ , SCl ₂ SO ₃ , S ₂ C	Cl ₂ , S ₂ Cl ₂ , ₂ , S ₂ Cl ₂ , S Cl ₂ , H ₂ S,	S ₈ , H ₂ S SO ₃ , SO ₂ SCl ₂ , S ₈					
16								make 500 mI 500 mL	of 0.50 M H ₂ SO ₄ ? e. 400 mL
	NH ₃ + Co	uO → C	$Cu + N_2 +$		quatio	n using the	e lowe	st possible wh	nole-number coefficients.
THE BUI	a. 9	cificien	b. 10		c. 11	l	d. 1	12	e. 13
	nown is ab	out:		-					Cl ₃ , then the concentration of Al ³⁺ in
	a. 0.001	M	b. 0.01	M	c. 0.	1 M	d.	1 M	e. 10 M
19	a. KClO ₂ c. Al ₃ (SO		sium perc minum su	hlorate ılfate			O cop :PO4 m	per oxide nagnesium ph	osphate
		e [OH-] i		. How m	nuch w		d she a	2O (MW = 31 add to make the standard of the st	5 g/mol). She wanted to make a ne solution? e. 99 mL

Name	AP Chem	/	 /

Practice Exam 1 Part 2 - 2 Free Response Question – 20 minutes

Answer the following questions that relate to the analysis of chemical compounds.

- (a) A compound containing the elements C, H, N and O is analyzed. When a 2.1106 g sample is burned in excess oxygen, 3.2017 g of $CO_2(g)$ is formed. The combustion analysis also showed that the sample contained 0.1710 g of hydrogen.
 - (i) Determine the mass, in grams, of C in the 2.1106 g sample of the compound.
 - (ii) When the compound is analyzed for N content only, the mass percent of N is found to be 32.16%. Determine the mass, in grams of N in the original 2.1106 g sample of the compound.
 - (iii) Determine the mass, in grams, of oxygen in the original 2.1106 g sample of the compound.
 - (iv) Determine the empirical formula of the compound.
 - (v) The molecular mass of the compound is 174.2 g/mol. Determine the molecular formula of the compound.

- #2. The reaction between solid copper metal and silver nitrate was demonstrated to you early in the course. It can be represented by the following reaction:
 - $Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{2+}(aq) + 2Ag(s)$
- (a) A 1.87 g sample of copper wire was placed in 225 mL of 0.250 M AgNO₃ at 25°C.
 - (i) Identify the limiting reactant.
 - (ii) What is the maximum mass of solid silver that can be produced?
 - (iii) Determine the value of [Cu²⁺] after the reaction is complete. Assume the volume change is negligible.
 - (iv) When all of the limiting reactant has been consumed, how many moles of the other reactant remain?
- (b) Answer the following questions about the reaction above.
 - (i) Which substance acts as the oxidizing agent?
 - (ii) How many electrons are transferred in the reaction?