Name \qquad AP Chem \qquad

Practice Exam 1

Part 1-20 Multiple Choice Question-20 minutes

1. \qquad When potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$ is dissolved in water, it is best represented by:
a. $\mathrm{K}_{2}{ }^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
b. $2 \mathrm{~K}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7^{2-}}$
c. $2 \mathrm{~K}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{-}$
d. $\mathrm{K}_{2}{ }^{2+}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$
e. $2 \mathrm{~K}^{+}+2 \mathrm{Cr}^{4+}+7 \mathrm{O}^{2-}$
2. \qquad Which of the following pairs of compounds can be used to illustrate the law of multiple proportions?
a. KMnO_{4} and KOH
b. HI and HIO_{3}
c. O_{2} and O_{3}
d. SO_{3} and SO_{2}
e. both C \& D
3. \qquad Which of the following elements forms a polyatomic anion where it has an oxidation number of +5 ?
a. Ca
b. S
c. Fe
d. N
e. Cs
4. \qquad How many electrons does a sulfide ion have?
a. 18
b. 20
c. 14
d. 16
e. 32
5. \qquad When the following half reaction is balanced with the smallest whole number coefficients, it will contain: $\quad \mathrm{CN}^{-} \rightarrow \mathrm{CNO}^{-}$
a. $2 \mathrm{e}^{-}$on the right side
b. $1 e^{-}$on the right side
c. $\mathrm{H}_{2} \mathrm{O}$ on the right side
d. $2 \mathrm{H}^{+}$on the left side
e. a coefficient of 2 for CNO^{-}
6. \qquad The compound that contains 28.6% oxygen is:
a. NaOH
b. CaO
c. $\mathrm{Al}_{2} \mathrm{O}_{3}$
d. BaO
e. $\mathrm{Ca}(\mathrm{OH})_{2}$
7. \qquad Which of the following cannot be a reducing agent?
a. Au
b. S^{2-}
c. Mn^{7+}
d. Cu^{+}
e. O^{2-}
8. \qquad How many grams of $\mathrm{Ca}(\mathrm{OH})_{2}$ (molar mass $\left.=74.0 \mathrm{~g} / \mathrm{mol}\right)$ are contained in $5.00 \times 10^{2} \mathrm{~mL}$ of a 0.80 M calcium hydroxide solution?
a. 40 g
b. $60 . \mathrm{g}$
c. $30 . \mathrm{g}$
d. 18 g .
e. none of these
9. \qquad $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ \qquad $\mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ The reaction above represents the oxidation of methanol. How many moles of O_{2} are needed to oxidize 1 mole of $\mathrm{CH}_{3} \mathrm{OH}$?
a. $3 / 2$ moles
b. $5 / 2$ moles
c. 2 moles
d. $1 / 2$ moles
e. 1 mole
10. \qquad A 450 . mL sample of a 0.375 M solution is left on a hot plate overnight; the following morning the solution is 1.50 M . What volume of solvent has evaporated from the 0.375 M solution?
a. 338 mL
b. 56.3 mL
c. 112 mL
d. $230 . \mathrm{mL}$
e. 288 mL
11. \qquad What is the mass ratio of iron to oxygen in iron(II) oxide?
a. 3.5 to 1
b. 2.3 to 1
c. 1 to 3.5
d. 1 to 2.3
e. 1 to 1.75
12. \qquad When 100 grams of butane gas $\left(\mathrm{C}_{4} \mathrm{H}_{10}, \mathrm{MW}=58.14\right)$ is burned in excess oxygen gas, the theoretical yield of $\mathrm{H}_{2} \mathrm{O}$ (in grams) is:
a. $\frac{(58.14)(18.02)}{(100)(5)}$
b. $\frac{(58.14)(5)}{(100)(18.02)}$
c. $\frac{(4)(18.02)}{(58.14)(5)}$
d. $\frac{(5)(58.14)(18.02)}{(100)}$
e. $\frac{(100)(5)(18.02)}{(58.14)}$
13. \qquad Excess $\mathrm{S}_{8}(\mathrm{~s})$ is heated with a metallic element until the metal reacts completely. All excess sulfur is combusted to a gaseous compound and escapes from the crucible. Given the information that follows, determine the most probable formula for the residue.

Mass of crucible, lid and metal $=55.00$ grams
Mass of crucible and lid $=41.00$ grams
Mass of crucible , lid and residue $=62.00$ grams
a. CuS
b. $\mathrm{Cu}_{2} \mathrm{~S}$
c. FeS
d. $\mathrm{Fe}_{2} \mathrm{~S}_{3}$
e. not enough information
14. \qquad What ions would you find in solution if potassium perchlorate was dissolved in water?
a. $\mathrm{KCl}, \mathrm{O}_{2}$
b. $\mathrm{K}^{+}, \mathrm{ClO}^{-}, \mathrm{O}^{2-}$
c. $\mathrm{KCl}, \mathrm{O}^{2-}$
d. $\mathrm{K}^{+}, \mathrm{ClO}_{4}^{-}$
e. $\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{O}^{2-}$
15. \qquad Arrange the following species in order of increasing oxidation number of the sulfur atom $\begin{array}{lllllll}\mathrm{SCl}_{2} & \mathrm{~S}_{8} & \mathrm{SO}_{2} & \mathrm{H}_{2} \mathrm{~S} & \mathrm{~S}_{2} \mathrm{Cl}_{2} & \mathrm{SO}_{3}\end{array}$
a. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{~S}_{8}, \mathrm{~S}_{2} \mathrm{Cl}_{2}, \mathrm{SCl}_{2}, \mathrm{SO}_{2}, \mathrm{SO}_{3}$
b. $\mathrm{SO}_{3}, \mathrm{SO}_{2}, \mathrm{SCl}_{2}, \mathrm{~S}_{2} \mathrm{Cl}_{2}, \mathrm{~S}_{8}, \mathrm{H}_{2} \mathrm{~S}$
c. $\mathrm{H}_{2} \mathrm{~S}, \mathrm{~S} 8, \mathrm{SCl}_{2}, \mathrm{~S}_{2} \mathrm{Cl}_{2}, \mathrm{SO}_{3}, \mathrm{SO}_{2}$
d. $\mathrm{SO}_{2}, \mathrm{SO}_{3}, \mathrm{~S}_{2} \mathrm{Cl}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SCl}_{2}, \mathrm{~S}_{8}$
e. $\mathrm{S}_{8}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{3}, \mathrm{SCl}_{2}, \mathrm{SO}_{2}, \mathrm{~S}_{2} \mathrm{Cl}_{2}$
16. \qquad How much $2.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ would be required to make 500 mL of $0.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?
a. 100 mL
b. 125 mL
c. 250 mL
d. 500 mL
e. 400 mL
17. \qquad Balance the following equation using the lowest possible whole-number coefficients. $\mathrm{NH}_{3}+\mathrm{CuO} \rightarrow \mathrm{Cu}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O}$
The sum of the coefficients is:
a. 9
b. 10
c. 11
d. 12
e. 13
18. \qquad If a $10 . \mathrm{cm}^{3}$ sample of unknown contains $1 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{AlCl}_{3}$, then the concentration of Al^{3+} in the unknown is about:
a. 0.001 M
b. 0.01 M
c. 0.1 M
d. 1 M
e. 10 M
19. \qquad Which one of the following is correct?
a. KClO_{3}, potassium perchlorate
b. CuO copper oxide
c. $\mathrm{Al}_{3}\left(\mathrm{SO}_{3}\right)_{2}$ aluminum sulfate
d. MgPO_{4} magnesium phosphate
e. $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ sodium dichromate
20. \qquad A student was given 31.5 mg of $\mathrm{Ba}(\mathrm{OH})_{2} * 8 \mathrm{H}_{2} \mathrm{O}(\mathrm{MW}=315 \mathrm{~g} / \mathrm{mol})$. She wanted to make a solution where the $\left[\mathrm{OH}^{-}\right]$is 0.10 M . How much water should she add to make the solution?
a. 1.0 mL
b. 2.0 mL
c. 4.0 mL
d. 8.0 mL
e. 99 mL

Name \qquad AP Chem

Practice Exam 1
 Part 2-2 Free Response Question - 20 minutes

Answer the following questions that relate to the analysis of chemical compounds.
(a) A compound containing the elements $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and O is analyzed. When a 2.1106 g sample is burned in excess oxygen, 3.2017 g of $\mathrm{CO}_{2}(\mathrm{~g})$ is formed. The combustion analysis also showed that the sample contained 0.1710 g of hydrogen.
(i) Determine the mass, in grams, of C in the 2.1106 g sample of the compound.
(ii) When the compound is analyzed for N content only, the mass percent of N is found to be 32.16%.

Determine the mass, in grams of N in the original 2.1106 g sample of the compound.
(iii) Determine the mass, in grams, of oxygen in the original 2.1106 g sample of the compound.
(iv) Determine the empirical formula of the compound.
(v) The molecular mass of the compound is $174.2 \mathrm{~g} / \mathrm{mol}$. Determine the molecular formula of the compound.
\#2. The reaction between solid copper metal and silver nitrate was demonstrated to you early in the course. It can be represented by the following reaction:
$\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
(a) A 1.87 g sample of copper wire was placed in 225 mL of $0.250 \mathrm{M} \mathrm{AgNO}_{3}$ at $25^{\circ} \mathrm{C}$.
(i) Identify the limiting reactant.
(ii) What is the maximum mass of solid silver that can be produced?
(iii) Determine the value of $\left[\mathrm{Cu}^{2+}\right]$ after the reaction is complete. Assume the volume change is negligible.
(iv) When all of the limiting reactant has been consumed, how many moles of the other reactant remain?
(b) Answer the following questions about the reaction above.
(i) Which substance acts as the oxidizing agent?
(ii) How many electrons are transferred in the reaction?

