Question Analysis - Exam 1 MC

\#	Topics	Corr. Ans.	$\begin{gathered} \text { \% } \\ \text { Corr. } \end{gathered}$	My Explanation
1.	Oxidation Numbers	B	78	F forms a 1-ion, S forms a 2-ion, Mg forms a $2+$ ion. Ar does not usually ionize - though it is used in Geiger counters where highenergy particles from radioactive decay processes produce Ar^{+}ions when they travel through matter. The probe of the Geiger counter is filled with argon gas, which can be ionized by a rapidly moving particle. Mn forms $2+, 3+, 4+, 6+$ and $7+$ ions.
2.	Oxidation Numbers/ Compounds	E	68	Using possible oxidation states from above, the only possible choice is Mn .
3.	Oxides/ Acid Anhydrides	B	74	Non-metal oxides react with water to form acidic solutions. F can only be 1-so it won't form oxides. S reacts with oxygen to form SO_{2} and SO_{3}. These oxides react with water to form $\mathrm{H}_{2} \mathrm{SO}_{3}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$. I did a demo showing this.
4.	Isotopes	D	87	Isotopes have the same number of protons but different amounts of neutrons and as a result, different mass numbers.
5.	Redox Balancing	E	82	Separate into two half reactions: $4 \mathrm{Mg} \rightarrow 4 \mathrm{Mg}^{2+}+8 \mathrm{e}^{-}$ $8 \mathrm{e}^{-}+10 \mathrm{H}^{+}+\mathrm{NO}_{3}{ }^{1-} \rightarrow \mathrm{NH}_{4}{ }^{1+}+3 \mathrm{H}_{2} \mathrm{O}$
6.	Stoichiometry	D	67	$\begin{aligned} & 4 \mathrm{P}+5 \mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{10} \\ & 14.2 \mathrm{~g} \mathrm{P}_{4} \mathrm{O}_{10} \times \frac{1 \text { mole } \mathrm{P}_{4}}{4} \underline{\mathrm{O}}_{10} \times \\ & 1 \end{aligned}$
7.	Organic Chemistry/ Stoichiometry	A	59	Pick any alkene. I chose ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$. $\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\ & 0.561 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4} \times \frac{1 \mathrm{~mole} \mathrm{C}_{2} \underline{H}_{4}}{28.0 \text { grams }} \times \frac{2 \text { moles } \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mole} \mathrm{C}_{2} \underline{\mathrm{H}}_{4}}=0.0400 \mathrm{moles} \end{aligned}$
8.	Solutions/ Molarity	D	38	$\begin{aligned} & \mathrm{Na}_{2} \mathrm{CO}_{3}: 3.0 \mathrm{M} \times 0.070 \mathrm{~L}=0.210 \text { moles } \times 2=0.420 \\ & \mathrm{NaHCO}_{3}: 1.0 \times 0.030=0.030 \\ & 0.420+0.030=0.450 \text { moles } / 0.100 \mathrm{~L}=4.50 \mathrm{M} \end{aligned}$
9.	Oxidizing Agent	E	38	An oxidizing agent is reduced in a chemical reaction. Reduction means gaining electrons. I' can't gain any more electrons; all the rest can.
10.	Solutions	B	48	$\begin{aligned} & \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{K}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{BaCO}_{3}+2 \mathrm{KNO}_{3} \\ & \frac{0.400}{1}=\underline{\mathrm{x}} \quad \underline{\mathrm{x}} \quad \underline{0.200}=\underline{x} \\ & \mathrm{x}=0.012 \quad \underline{x} \quad \mathrm{x}=0.0040 \\ & 0.012-0.004=0.008 \text { mol excess } \\ & 0.008 \div 0.050=0.160 \\ & \hline \end{aligned}$
11.	Empirical Formula	D	44	C: $12 / 44 \times 88=24 \div 12=2$ H: $2 / 18 \times 27=3 \div 1=3$ Empirical formula is $\mathrm{C}_{2} \mathrm{H}_{3} . \mathrm{C}_{4} \mathrm{H}_{6}$ is a multiple of this empirical formula.
12.	Molarity	C	88	$6.00=\mathrm{x} / 0.050 ; \mathrm{x}=0.300 \mathrm{moles} ; 0.300 \times 98.1=29.4$ grams
13.	Redox	E	82	I^{-}is oxidized by $\mathrm{MnO}_{4}{ }^{-} . \mathrm{MnO}_{4}^{-}$is reduced by I^{-}. The oxidation number for iodine changes from -1 to 0 . The oxidation number of manganese changes from +7 to +4 .
14.	Redox Balancing	D	82	Rules for redox balancing: 1. Balance all non hydrogen and oxygen elements. 2. Balance oxygen using water. 3. Balance hydrogen using H^{+}. 4. Balance the charge using e-.
15.	Molar Mass	E	75	I would set up a ratio. $\frac{96 \text { grams O}}{164 \text { grams } \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}}=\frac{24 \text { grams of O }}{x}$ 96 is 4 times larger than 24 , so divide 164 by 4 and $x=41$.

16.	Empirical Formula	D	74	$\mathrm{N}: 36.8 \div 14=$ approx. 2.5 but a little larger O: $63.2 \div 16=$ approx. 4 but a little smaller At this point the best answer is D. If you wanted to go through all of the steps using the exact numbers you can but it takes up extra needed time. Hopefully you were able to eliminate A \& B right off the bat.
17.	Dilutions	C	65	$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \rightarrow(3)(1000)=11.6 \mathrm{x} \rightarrow 3000 \div 10$ (rounded down for easy math $)=300.11 .6$ is bigger than 10 so my answer should be a little lower. C is the only one that is close.
18.	Atoms/ Thomson/ Electrons	A	34	Thomson used a cathode ray tube and a magnet to prove that atoms had particles with negative charges....electrons.
19.	Balancing Chemical Equation	D	57	It is just regular balancing. Balance carbon first, then hydrogen and lastly oxygen. $1,3.5,3,3$
20.	Decomposition of Hydrates	B	51	$\begin{aligned} & \mathrm{Na}_{2} \mathrm{CO}_{3}: 45.7 \div 106=0.4 \mathrm{X} \div 0.4 \mathrm{X}=1 \\ & \mathrm{H}_{2} \mathrm{O}: 54.3 \div 18=3 \div 0.4 \mathrm{X}=\sim 7 \end{aligned}$
21.	Stoichiometry/ Gas Laws	D	71	At STP you can use 22.4. $0.400 \mathrm{~mol} \mathrm{~K} \times \frac{1 \mathrm{~mole} \mathrm{H}_{2}}{2 \text { mole K }} \times 22.4 \mathrm{~L}=4.48 \mathrm{~L}$
22.	Electrolytes	A	46	Ionic compounds dissociate in water, covalent compounds do not. Methanol is a covalent compound so it will not dissociate and will not be an electrolyte.
23.	Stoichiometry/ Limiting Reagent	B	39	$0.200=\mathrm{x} / 25 ; \mathrm{x}=5 \mathrm{mmole} \mathrm{x} 3 / 1=15$ mmole $0.450=x / 30 ; x=13.5$ mmole $x 3 / 5=8.1$ mmole
24.	Solutions/ Stoichiometry	A	20	$0.200=x / 0.300$ 0.060 mol x $3=0.18 \mathrm{~mol}$ Need $0.12 \mathrm{~mol} \mathrm{NO}_{3}{ }^{1-}$ more $0.12 \mathrm{~mol} \mathrm{NO}_{3}{ }^{1-} \mathrm{x} 1 \mathrm{~mole} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} / 2$ mole $\mathrm{NO}_{3}{ }^{1-}=0.060 \mathrm{~mol}$
25.	Oxidizing Agent	E	62	An oxidizing agent must be a reactant. The oxidizing agent must contain an element that is reduced and thus, gains electrons. In $\mathrm{MnO}_{4}{ }^{1-}, \mathrm{Mn}$ has a +7 charge. In $\mathrm{MnO}_{2} \mathrm{Mn}$ has a +4 charge.
26.	Empirical Formula	B	83	I guess the only way to do this one is to plug in the weights of each and then try the obvious ones by dividing each by the smallest. You are looking for a ratio that is greater than 1.5:1.0. For example: CrO_{3} : 52: 48, too small; $\mathrm{CrO}_{2}: 52: 48$ possible; CrO : 52:32 too high; $\mathrm{Cr}_{2} \mathrm{O}$ 104:16 impossible; $\mathrm{Cr}_{2} \mathrm{O}_{3}$ 104:48 too high.
27.	Density/Significant Figures	D	39	$\mathrm{D}=\mathrm{m} / \mathrm{V}$. To find mass: $25.0-3.0=22.0$. To find density: $22.0 / 11.0=2.00$. In subtraction your answer can only be as precise as your least precise measurement; both numbers were precise to the tenths place. In division, your answer can only have as many significant figures as the number in the problem with the fewest number of significant figures; each has three so your answer must have three.
28.	Molarity	E	55	There is a $2: 1$ ratio between K^{+}and $\mathrm{SO}_{4}{ }^{2-}$ so off the bat eliminate, A, B \& D. Now, to solve, $87 / 174=0.5$ moles. 0.5 moles $/ 0.250 \mathrm{~L}$ $=2.0 \mathrm{M}$. Due to the $2: 1$ ratio, the molarity of K^{+}is 4.0 M and $\mathrm{SO}_{4}{ }^{2-}$ is 2.0 M .
29.	Chemical Reactions/ Percent Composition/ Stoichiometry	D	29	$\mathrm{CaCO}_{3}+2 \mathrm{H}^{+} \rightarrow \mathrm{Ca}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ Use grams of CO_{2} to find grams of CaCO_{3} : $0.38 \mathrm{~g} \mathrm{CO}_{2} \times 1 \mathrm{~mol} \mathrm{CO}_{2} / 44 \mathrm{~g} \times 1 \mathrm{~mol} \mathrm{CaCO}_{3} / 1 \mathrm{~mol} \mathrm{CO}_{2} \times 100 \mathrm{~g}$ $\mathrm{CaCO}_{3} / 1 \mathrm{~mol} \mathrm{CaCO}_{3}=0.86$ grams $\mathrm{CaCO}_{3} .0 .86 / 1.0 \times 100=86 \%$
30.	Balancing Equations	C	33	This is a tricky balancing problem but do-able especially if you have the time. The coefficients of the balanced equations are: 4,1,2,4

31.	Stoichiometry	B	55	Write the balanced equation and then do mole to mass stoichiometry $\mathrm{Au}_{2} \mathrm{~S}_{3}+3 \mathrm{H}_{2} \rightarrow 3 \mathrm{H}_{2} \mathrm{~S}+2 \mathrm{Au}$ 0.0500×2 moles of $\mathrm{Au} / 1$ mole $\mathrm{Au}_{2} \mathrm{~S}_{3} \times 197.0 \mathrm{~g} \mathrm{Au} / 1 \mathrm{~mole} \mathrm{Au}=$ $19.7 \mathrm{~g} \mathrm{Au}_{2} \mathrm{~S}_{3}$
32.	Balancing Chemical Equations	C	74	Be sure to account for all oxygen atoms. Oxygen is very reactive and will react with all nonmetals in combustion reactions. Often students miscount because of oxygen's high reactivity. We balance chemical equations to observe the fact that matter is not created or destroyed.
33.	Oxidation Number	D	75	Know how to calculate the oxidation number of each element in a compound. $\mathrm{H}=+1, \mathrm{~F}=-1, \mathrm{O}=-2$. Usually the rest have to be determined. Non-metals can have both positive and negative charges.
34.	Stoichiometry / Solubility	C	54	A solution of 0.10 M NaCl contains 0.10 mol of chloride ions. A solution of 0.10 M calcium chloride contains 0.20 mol of chloride ions. $0.1+0.2=0.3 \mathrm{Cl}^{-} .0 .3 \mathrm{~mol} \mathrm{Cl}-=0.3 \mathrm{~mol} \mathrm{Ag}^{+}$.
35.	Balancing Equations	C	71	It's just balancing. Be sure to do a double check at the end by writing down how many of each element there are in each molecule on each side of the equation.
36.	Empirical Formula	C	50	Divide each percent by the elements atomic weight. Divide by the smallest result. Multiply (if necessary) to make it a whole number.
37.	Nucleus / Rutherford	E	59	Ernest Rutherford discovered that atoms are mostly empty space and there is a large mass of positive charge contained in the nucleus. He did this in his gold foil experiment where positively charged alpha particles were shot at gold foil. Most passed through the foil but some were deflected and some even bounced back. Since positively charged alpha particles were repelled, it meant the atom had some positive charge inside it.
38.	Stoichiometry / Limiting Reagent	D	69	When you are given amounts of more than one substance, perform stoichiometry using each and see which produces the least amount. The limiting reactant determines the greatest amount of product that can be produced.
39.	Solutions / Molarity	C	28	Determine the moles of hydroxide in each solution and divide by the new volume. Note: When $\mathrm{Ba}(\mathrm{OH})_{2}$ dissociates, two hydroxide ions are produced. The KOH solution produces 10 mmol of OH -. The $\mathrm{Ba}(\mathrm{OH})_{2}$ solution produces 18 mmol of $\mathrm{OH}^{-} .28 \mathrm{mmol}$ in 100 mL produces a $0.28 \mathrm{M} \mathrm{OH}^{-}$solution.
40.	Chemical Reactions / Precipitates / Stoichiometry / Limiting Reagent	C	31	Write the equation, balance it. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is the limiting reagent. Determine how many moles of barium that do not form the barium sulfate precipitate. Divide unreacted barium moles by the total volume. $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+2 \mathrm{HCl}$ 0.050 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (L.R.) uses up 0.050 moles of BaCl_{2}. The new volume is $200 \mathrm{~mL} .0 .050 \quad 0.200=0.025 \mathrm{M}\left[\mathrm{Ba}^{2+}\right]$

Difficulty	\% of Questions	Question Numbers
$80-100 \%$ correct	15%	$4,5,12,13,14,26$
$60-79 \%$ correct	32.5%	$1,2,3,6,15,16,17,21,25,32,33,35,38$
$40-59 \%$ correct	27.5%	$7,10,11,19,20,22,28,31,34,36,37$
$20-39 \%$ correct	25%	$8,9,18,23,24,27,29,30,39,40$
$0-19 \%$ correct	0%	

Average Nation Score using questions above: 58.4\%.

Exam 1 Analysis: Multiple Choice

	2012-2013	2011-2012	2010-2011	2009-2010	2008-2009	2007-2008	2006-2007
High	$\begin{array}{r} 35 / 40 \\ 87.5 \% \end{array}$	$\begin{gathered} 28 / 40 \\ 70 \% \end{gathered}$	$\begin{aligned} & 36 / 40 \\ & 90 \% \end{aligned}$	$\begin{aligned} & 31 / 40 \\ & \mathbf{7 8 \%} \end{aligned}$	$\begin{gathered} 31 / 45 \\ 69 \% \end{gathered}$	$\begin{gathered} \text { 29/42 } \\ \mathbf{6 9 \%} \end{gathered}$	$\begin{aligned} & 36 / 45 \\ & 80 \% \end{aligned}$
Average	$\begin{gathered} \hline 21.2 / 40 \\ 53 \% \end{gathered}$	$\begin{gathered} \hline 16 / 40 \\ 41 \% \end{gathered}$	$\begin{gathered} \hline \mathbf{2 0 / 4 0} \\ 50 \% \end{gathered}$	$\begin{aligned} & 19 / 40 \\ & 48 \% \end{aligned}$	$\begin{aligned} & \hline 21 / 45 \\ & 46 \% \end{aligned}$	$\begin{aligned} & \hline 18 / 42 \\ & 42 \% \end{aligned}$	$\begin{gathered} \hline 24 / 45 \\ \mathbf{5 3 \%} \end{gathered}$
Low	$\begin{aligned} & \text { 12/40 } \\ & \text { 30\% } \end{aligned}$	$\begin{aligned} & 9 / 40 \\ & 23 \% \end{aligned}$	$\begin{aligned} & \hline 8 / 40 \\ & 20 \% \end{aligned}$	$\begin{aligned} & 11 / 40 \\ & 28 \% \end{aligned}$	$\begin{aligned} & 7 / 45 \\ & 16 \% \end{aligned}$	$\begin{aligned} & \text { 5/42 } \\ & 12 \% \end{aligned}$	$\begin{aligned} & \hline 8 / 45 \\ & 18 \% \end{aligned}$

Exam 1 Analysis: Free Response

	2012-2013	2011-2012	2010-2011	2009-2010	2008-2009	2007-2008	2006-2007
High	33/34 97\%	23/32 72\%	31/33 94\%	33/33 100\%	29/33 88\%	38/47 81\%	38/45 84\%
Average	15/34 44\%	13/32 40\%	11/33 33\%	12/33 36\%	12/33 36\%	19/47 41\%	16/45 35\%
Low	2/34 6\%	3/32 9\%	1/33 3\%	1/33 3\%	2/33 6\%	6/47 13\%	3/45 7\%

